
Are Large Language Models Good at Generating Software Specifications? Yes, but not Quite.
Danning Xie1, Byungwoo Yoo2, Nan Jiang1, Mijung Kim2, Lin Tan1, Xiangyu Zhang2, Judy S Lee3

Study Overview

Function signature: isNullOrEmpty(java.lang.String string)
Javadoc comment: @return true if the string is null or is an empty string
Specification extracted by Jdoctor:
 string==null || string.isEmpty() -> methodResultID==true

RQ1 & 2: Specification Extraction Capability

Random Retrieval: Randomly
selecting K samples as the
few-shots.
Semantic Retrieval (SR):
Applying a RoBERTa model as the
semantic retrieval model to select
the most semantically similar K
samples as the few-shots.

● Specifications:
○ dtype: float32
○ structure: tensor

○ shape: [batch_size, height, width, channels]
○ ndim: 4

DocTor Software Specification Dataset:
● Function Signature: tf.image.extract_glimpse(input, size, offset, …)
● Document Description: input: A `Tensor` of type `float32`. A 4-D float

tensor of shape `[batch_size, height, width, channels]`

Prompt for JDoctor Data Prompt for DocTor Data

RQ3: Failure Root Cause AnalysisMotivation

● Software specifications are essential for ensuring the reliability of
software systems.

● Existing approaches on specifications extraction (from comments
or documents) are domain-specific and semi-automatic.

Are LLMs effective in generating software specifications from
documentation or comments?

What are the strengths and weaknesses of LLMs for software
specification generation compared to traditional approaches?

Studied datasets and techniques:
● Jdoctor: translates Javadoc comments (@param, @returns,

@throws) into specifications
● DocTer: extracts DL-specific constraints (e.g., tensor shapes)

from API documentation.

Benchmark model — Starcoder
● 15.5 B, open-source, long input support (8,192 tokens)

 Starcoder, with 10–60 of randomly selected examples, achieves
comparable results with the SOTA specification extraction tools.

Manually sample and examine failing cases of both LLM and the
baseline approaches to identify their unique failure root causes .

RQ4: Model Comparison

Approach/
Model (+SR) #param open-

source?
Overall Accuracy (%) Cost

($)K=10 20 40 60
Jdoctor ✓ 83.0

StarCoder 15.5B ✓ 88.9 91.0 91.7 93.0 0

GPT-3 davinci 175B* ✗ 92.9 93.5 94.4 95.6 163.8
curie Unknown ✗ 54.3 66.4 - - 3.9

GPT-3.5 turbo Unknown ✗ 89.3 87.9 87.4 84.4 16.9
BLOOM 176B ✓ 86.8 - - - 0

CodeGen
(Multi)

16B ✓ 86.4 88.4 - - 0
6B ✓ 86.0 88.4 - - 0
2B ✓ 82.8 87.4 - - 0

350M ✓ 68.7 78.5 - - 0

CodeGen2

16B ✓ 86.5 89.0 - - 0
7B ✓ 83.5 88.3 - - 0

3.7B ✓ 70.0 80.4 - - 0
1B ✓ 75.7 81.7 - - 0

Incoder 6B ✓ 52.7 61.6 - - 0
1B ✓ 54.2 62.9 - - 0

● Missing rule (78%)
● Incomplete Semantic Comprehension (13.5%)
● Incorrect Rule (8.5%)

We identify the root causes of the LLM by manually fixing them.

“-” denotes experiments skipped due to token limits.

Few-Shot Learning

Large Language Models

Baseline Approaches

1

2 3

 Semantic retrieval (SR) strategy further improves Starcoder’s
performance to outperforming SOTA approaches.

 Most LLMs achieve better or comparable performance as
custom-built traditional specification extraction techniques.

 StarCoder, an open-sourced model, is the most competitive model
for extracting specifications, with its high performance, $0 cost, and
long prompt support, facilitating its adaptability and customization.

 StarCoder’s strong performance makes GPT3 Davinci less desirable
given its size and cost. CodeGen and CodeGen2 are reasonable
open-source alternatives.

Missing domain knowledge: LLM is lack of context while some
traditional methods are search-based.

Wrong focus:

Poorly Phrased: the original documents or comments are poorly
written, ambiguous, or hard to understand even for humans.

Other: “contradictory document” and “unclear”

Ineffective prompts: The examples selected in the prompts are not
good enough. Fixed by manually selecting more relevant examples,
or altering the order of examples.

