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Study Overview

Function signature: isNullOrEmpty(java.lang.String string)
Javadoc comment: @return true if the string is null or is an empty string
Specification extracted by Jdoctor: 
         string==null || string.isEmpty() -> methodResultID==true

RQ1 & 2: Specification Extraction Capability

Random Retrieval: Randomly 
selecting K samples as the 
few-shots.
Semantic Retrieval (SR): 
Applying a RoBERTa model as the 
semantic retrieval model to select 
the most semantically similar K 
samples as the few-shots.

● Specifications:
○ dtype: float32
○ structure: tensor

○ shape: [batch_size, height, width, channels]
○ ndim: 4

DocTor Software Specification Dataset:
● Function Signature: tf.image.extract_glimpse(input, size, offset, …)
● Document Description: input: A `Tensor` of type `float32`. A 4-D float 

tensor of shape `[batch_size, height, width, channels]`

Prompt for JDoctor Data Prompt for DocTor Data

RQ3: Failure Root Cause AnalysisMotivation

● Software specifications are essential for ensuring the reliability of 
software systems.

● Existing approaches on specifications extraction (from comments 
or documents) are domain-specific and semi-automatic. 

Are LLMs effective in generating software specifications from 
documentation or comments?

What are the strengths and weaknesses of LLMs for software 
specification generation compared to traditional approaches?

Studied datasets and techniques:
● Jdoctor: translates Javadoc comments (@param, @returns, 

@throws) into specifications
● DocTer: extracts DL-specific constraints  (e.g., tensor shapes) 

from API documentation.

Benchmark model —  Starcoder
● 15.5 B, open-source, long input support (8,192 tokens)

   Starcoder, with 10–60 of randomly selected examples, achieves 
comparable results with the SOTA specification extraction tools. 

Manually sample and examine failing cases of both LLM and the 
baseline approaches to identify their unique failure root causes . 

RQ4: Model Comparison

Approach/
Model (+SR) #param open-

source?
Overall Accuracy (%) Cost 

($)K=10 20 40 60
Jdoctor ✓ 83.0

StarCoder 15.5B ✓ 88.9 91.0 91.7 93.0 0

GPT-3 davinci 175B* ✗ 92.9 93.5 94.4 95.6 163.8
curie Unknown ✗ 54.3 66.4 - - 3.9

GPT-3.5 turbo Unknown ✗ 89.3 87.9 87.4 84.4 16.9
BLOOM 176B ✓ 86.8 - - - 0

CodeGen
(Multi)

16B ✓ 86.4 88.4 - - 0
6B ✓ 86.0 88.4 - - 0
2B ✓ 82.8 87.4 - - 0

350M ✓ 68.7 78.5 - - 0

CodeGen2

16B ✓ 86.5 89.0 - - 0
7B ✓ 83.5 88.3 - - 0

3.7B ✓ 70.0 80.4 - - 0
1B ✓ 75.7 81.7 - - 0

Incoder 6B ✓ 52.7 61.6 - - 0
1B ✓ 54.2 62.9 - - 0

● Missing rule (78%)
● Incomplete Semantic Comprehension (13.5%)
● Incorrect Rule (8.5%)

We identify the root causes of the LLM by manually fixing them.

“-” denotes experiments skipped due to token limits.
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   Semantic retrieval (SR) strategy further improves Starcoder’s 
performance to outperforming SOTA approaches. 

   Most LLMs achieve better or comparable performance as 
custom-built traditional specification extraction techniques.

   StarCoder, an open-sourced model, is the most competitive model 
for extracting specifications, with its high performance, $0 cost, and 
long prompt support, facilitating its adaptability and customization.

   StarCoder’s strong performance makes GPT3 Davinci less desirable 
given its size and cost. CodeGen and CodeGen2 are reasonable 
open-source alternatives.

Missing domain knowledge: LLM is lack of context while some 
traditional methods are search-based. 

Wrong focus:

Poorly Phrased: the original documents or comments are poorly 
written, ambiguous, or hard to understand even for humans. 

Other: “contradictory document” and “unclear”

Ineffective prompts: The examples selected in the prompts are not 
good enough. Fixed by manually selecting more relevant examples, 
or altering the order of examples. 


