Are Large Language Models Good at Generating Software Specifications? Yes, but not Quite. Danning Xie¹, Byungwoo Yoo², Nan Jiang¹, Mijung Kim², Lin Tan¹, Xiangyu Zhang², Judy S Lee³

Motivation

- Software specifications are essential for ensuring the reliability of software systems.
- Existing approaches on specifications extraction (from comments or documents) are domain-specific and semi-automatic.

Function signature: isNullOrEmpty(java.lang.String string) Javadoc comment: @return true if the string is null or is an empty string Specification extracted by Jdoctor:

string==null || string.isEmpty() -> methodResultID==true

Are LLMs effective in generating software specifications from documentation or comments?

What are the strengths and weaknesses of LLMs for software specification generation compared to traditional approaches?

Study Overview

Studied datasets and techniques:

- Jdoctor: translates Javadoc comments (@param, @returns, @throws) into specifications
- **DocTer:** extracts DL-specific constraints (e.g., tensor shapes) from API documentation.

Benchmark model – Starcoder

• 15.5 B, open-source, long input support (8,192 tokens)

Few-Shot Learning

Signature: $\langle x_1 - signature \rangle$ Javadoc comment: $\langle x_i - comment \rangle$ Specification: $\langle y \rangle$

Signature: $\langle x_{k} - signature \rangle$ Javadoc comment: $\langle x_{\kappa}$ - comment> Specification: $\langle y_{\nu} \rangle$

Signature: <*x*_{target} - signature> Javadoc comment: <*x*_{target} - comment> **Specification:**

Random Retrieval: <u>Randomly</u> selecting K samples as the few-shots.

Semantic Retrieval (SR):

Applying a RoBERTa model as the semantic retrieval model to select the <u>most semantically similar</u> **K** samples as the few-shots.

Approach/ Model (+SR)		#param	open- source?	Overall Accuracy (%)			
				K=10	20	40	60
Jdoctor			\checkmark	83.0			
StarCoder		15.5B	\checkmark	88.9	91.0	91.7	93.0
GPT-3	davinci	175B*	X	92.9	93.5	94.4	95.6
	curie	Unknown	X	54.3	66.4	-	-
GPT-3.5	turbo	Unknown	X	89.3	87.9	87.4	84.4
BLOOM		176B	\checkmark	86.8	-	_	-
CodeGen (Multi)		16B	\checkmark	86.4	88.4	-	-
		6B	\checkmark	86.0	88.4	-	-
		2B	\checkmark	82.8	87.4	-	-
		350M	\checkmark	68.7	78.5	-	-
CodeGen2		16B	\checkmark	86.5	89.0	-	-
		7B	\checkmark	83.5	88.3	-	-
		3.7B	\checkmark	70.0	80.4	-	-
		1B	\checkmark	75.7	81.7	-	-
Incoder		6B	\checkmark	52.7	61.6	-	-
		1B	\	54.2	62.9	-	-