
Consolidating Smart Contracts with Behavioral Contracts

GUANNAN WEI, Purdue University, USA
DANNING XIE, Purdue University, USA
WUQI ZHANG, The Hong Kong University of Science and Technology, China and Purdue University, USA
YONGWEI YUAN, Purdue University, USA
ZHUO ZHANG∗, Purdue University, USA

Ensuring the reliability of smart contracts is of vital importance due to the wide adoption of smart contract
programs in decentralized financial applications. However, statically checking many rich properties of smart
contract programs can be challenging. On the other hand, dynamic validation approaches have shown promise
for widespread adoption in practice. Nevertheless, as part of the programming environment for smart contracts,
existing dynamic validation approaches have not provided programmers with a notion to clearly articulate
the interface between components, especially for addresses representing opaque contract instances. We argue
that the “design-by-contract” approach should complement the development of smart contract programs.
Unfortunately, there is limited linguistic support for it in existing smart contract languages.

In this paper, we design a Solidity language extension ConSol that supports behavioral contracts. ConSol
provides programmers with a modular specification and monitoring system for both functional and latent
address behaviors. The key capability of ConSol is to attach specifications to first-class addresses and monitor
violations when invoking these addresses. We evaluate ConSol using 20 real-world cases, demonstrating
its effectiveness in expressing critical conditions and preventing attacks. Additionally, we assess ConSol’s
efficiency and compare gas consumption with manually inserted assertions, showing that our approach
introduces only marginal gas overhead. By separating specifications and implementations using behavioral
contracts, ConSol assists programmers in writing more robust and readable smart contracts.

CCS Concepts: • Software and its engineering → Software verification and validation; Software development

techniques; Specification languages.

Additional Key Words and Phrases: smart contracts, behavioral contracts, specification, runtime verification

ACM Reference Format:

Guannan Wei, Danning Xie, Wuqi Zhang, Yongwei Yuan, and Zhuo Zhang. 2024. Consolidating Smart
Contracts with Behavioral Contracts. Proc. ACM Program. Lang. 8, PLDI, Article 186 (June 2024), 26 pages.
https://doi.org/10.1145/3656416

1 INTRODUCTION

Smart contracts are programs to automate the execution of transactional agreements, ensuring that
all involved parties align in their expectations of the outcome. Smart contract programs are “smart”
as they ensure the economic outcome of transactions by running on decentralized blockchains, which
implement a consensus protocol of immutable, distributed ledgers [56]. Since transactions cannot
∗Corresponding author.

Authors’ addresses: Guannan Wei, Purdue University, USA, wei220@purdue.edu; Danning Xie, Purdue University, USA,
xie342@purdue.edu; Wuqi Zhang, The Hong Kong University of Science and Technology, Hong Kong, China and Purdue
University, USA, wuqi.zhang@connect.ust.hk; Yongwei Yuan, Purdue University, USA, yuan311@purdue.edu; Zhuo Zhang,
Purdue University, USA, zhan3299@purdue.edu.

Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and
the full citation on the first page. Copyrights for third-party components of this work must be honored. For all other uses,
contact the owner/author(s).
© 2024 Copyright held by the owner/author(s).
ACM 2475-1421/2024/6-ART186
https://doi.org/10.1145/3656416

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 186. Publication date: June 2024.

HTTPS://ORCID.ORG/0000-0002-3150-2033
HTTPS://ORCID.ORG/0000-0002-4359-4625
HTTPS://ORCID.ORG/0000-0001-8039-0528
HTTPS://ORCID.ORG/0000-0002-2619-2288
HTTPS://ORCID.ORG/0000-0002-6515-0021
https://doi.org/10.1145/3656416
https://orcid.org/0000-0002-3150-2033
https://orcid.org/0000-0002-4359-4625
https://orcid.org/0000-0001-8039-0528
https://orcid.org/0000-0002-2619-2288
https://orcid.org/0000-0002-6515-0021
https://doi.org/10.1145/3656416

186:2 Guannan Wei, Danning Xie, Wuqi Zhang, Yongwei Yuan, and Zhuo Zhang

be amended or revoked once finalized on the blockchain, the reliability of smart contract programs
is of vital importance, especially for those involving financial or monetary operations.

It is however ironic that despite the potential of smart contracts, languageswriting smart contracts
often lack adequate mechanisms to ensure the computational outcomes of smart contracts. This
unfortunate reality results in an unsatisfactory quality of smart contract programs. Without proper
means to ensure the quality of these programs, the aspiration to ensure the economic outcome
of transactions remains nothing more than a mere wish. Undoubtedly, the past few years have
witnessed several catastrophic failures of blockchain systems resulting from attacks on vulnerable
contract programs [92]. One notorious instance is the well-known DAO hack [29], where an
unauthorized attacker exploited recursive function calls and the callback mechanism, leading to
a staggering loss of $50 million. The fundamental issue at the core of this attack on deployed
contracts was the failure to prevent reentrancy under certain critical conditions.

To prevent such attacks, programmers need to be aware of and specify those critical conditions.
The execution can be allowed only when those conditions are met. However, we observe that
existing popular smart contract languages such as Solidity do not provide an expressive, effective, and
convenient means to specify and enforce contract behaviors. Although static verification techniques
have been intensively investigated (e.g. [4, 73, 83]), they can be expensive to use in practice or
become imprecise after making over-approximated assumptions for many rich properties that
depend on dynamic information. Run-time validations are more flexible, but existing work (e.g., [47])
focuses on coarse-grained global invariants or monitoring predicates of primitive data, which do
not provide convenient and effective ways to examine address values or higher-order functions
carrying latent computational content. As common patterns used in developing smart contract
programs, these callable addresses and higher-order functions often exhibit elusive vulnerabilities
(Figure 1a for an example).

The lack of sufficient linguistic means to modularly specify and enforce subtle and critical
behaviors not only lead to vulnerable contract programs but also discourages programmers from
writing clean and maintainable code with higher-level abstractions. Instead, programmers are
obliged to meticulously write verbose low-level code to implement defensive checks (e.g. using
assertions). These checks are interspersed with the main business logic, leading to poor readability
and maintainability (see an example in Figure 1a). Often worse, defensive checks are neglected,
resulting in vulnerable code causing real monetary loss.

Contracts for Contracts. To address these issues, we argue that behavioral software con-

tracts [53] should play a fundamental role in the development of reliable smart contract programs.
As a metaphor, “behavioral contracts” specify assumptions and guarantees between software com-
ponents, just as “smart contracts” specify assumptions and guarantees between business parties.
The two notions of “contract” should and can complement each other.

Behavioral contracts are an expressive and convenient tool for programmers since assumptions
(pre-conditions) and guarantees (post-conditions) are specified as executable specifications, written
in the same programming language syntax. At run-time, violations of these conditions aremonitored
and reported. Pioneered by the Eiffel language [51], programmers have embraced the design-by-
contractmethodology [52, 53] to build high-assurance software in various languageswith extensions
of behavioral contracts, e.g., Java [14], C++ [16], Python [60], Haskell [91], Racket [35], Elixir [62],
etc. Several studies [19, 52] have also shown that behavioral contracts can effectively support
design, development, testing, and debugging of software systems.
Unfortunately, such expressive tools for smart contract programmers are not yet available. For

example, Solidity, as the most widely-used smart contract language, is just equipped with less
expressive mechanisms such as low-level assertions andmodifiers [76], which are verbose to express

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 186. Publication date: June 2024.

Consolidating Smart Contracts with Behavioral Contracts 186:3

and enforce conditions of latent behavior of address calls. In this paper, we develop ConSol1, a
practical specification and monitoring system for Solidity to assist in developing reliable, readable,
and maintainable smart contract programs.

Specifying andMonitoring Functions and Addresses. ConSol allows programmers to specify
and monitor both function behaviors and address latent behaviors. At the top level of function
definitions, programmers can attach pre- and post-conditions to examine arguments, return values,
and side effects of the target functions. These predicates can state conditions using any Solidity
expression of type Boolean. When the function is invoked or returned at runtime, these conditions
regarding first-order values are dynamically examined by code generated with ConSol.
Other than primitive first-order data types such as integers, a more intricate data type in So-

lidity is address, which is the focus of this work. Similar to pointers in other low-level languages,
addresses are represented by unsigned integers, referring to an account or contract instance on
the blockchain. Unlike ordinary values, addresses carry latent computational contents, i.e., they
embody other callable functions. Addresses are commonly used to implement callback functions
in Solidity, thus functions taking addresses as arguments can have more latent behaviors that are
not immediately obvious by just examining the function. It is both a good software engineering
practice and a security concern to specify and monitor address behaviors when they are used as
function arguments or return values.
In contrast to monitoring the specification of first-order values, which can be performed by

assertions as the prelude and epilogue of function calls, predicates of addresses cannot be checked
in this way. To see the reason, consider an address 𝑥 passed as an argument to a function 𝑓 (𝑥),
the latent arguments, and return values of address call 𝑥 .𝑔(𝑒1, . . .) is unknown at the time of 𝑓 ’s
invocation (see Figure 1 for a detailed example). It is in fact undecidable to check properties of
address 𝑥 when calling 𝑓 . Moreover, addresses are first-class citizens, i.e., they can be used as
function arguments, returned from functions, or stored in storage. The flexible usage of addresses
poses a challenge: if programmers have specified conditions for latent address calls, when and how
should we soundly enforce the specification of address values?

ConSol tackles this issue by borrowing ideas from behavioral contracts of higher-order functions
[35], which have been in functional programming languages such as Racket. ConSol deploys a
whole-program transformation that designates a new value representation for guarded addresses,
which are address values that can be attached with programmer-specified conditions. This new
representation of guarded addresses is designed to be cheap and effective in practice. Although
using a different representation for guarded addresses breaks many operations on addresses (e.g.
checking equality for the same address attached with two different specifications), ConSol inserts
code to unwrap guarded addresses to naked addresses before performing these operations. In
this way, ConSol ensures that any violation of guarded address calls within the current contract
programs is monitored, regardless of how the guarded address value flows in the program. The
persistent monitoring empowers programmers to write down the expected behaviors of address
calls in a clean way, without interspersing low-level checks with business logic.

Effectiveness and Efficiency. To evaluate the effectiveness and efficiency of ConSol, we exam-
ine 20 real-world smart contract attacks (a total loss of $154.32M) and their defenses (Section 6). Our
results show that these defenses (i.e., fixes to bugs causing these losses) can be specified with a few
lines of ConSol specifications and the generated programs are effective in preventing these attacks.
Compared to manually inserted assertions, our approach is non-intrusive and improves readability.

1
Contract Solidity, or, Consolidated Solidity.

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 186. Publication date: June 2024.

186:4 Guannan Wei, Danning Xie, Wuqi Zhang, Yongwei Yuan, and Zhuo Zhang

To improve the efficiency, ConSol implements optimizations to reduce the “gas” consumption
induced by additional checking. Solidity programs run on the Ethereum Virtual Machine (EVM),
and each program can only use a bounded amount of resources to execute, known as “gas”. Since
gas is a scarce resource to the user, it is important that our approach is economic in its additional
gas overhead. To evaluate the gas consumption of our approach, we patch the vulnerable contracts
using both low-level assertions and ConSol specifications, respectively, and evaluate the gas fee
increases induced by two different ways of patching. Results show that patching with ConSol is
comparably efficient as using assertions, only costing at most $0.94 (avg. 0.21%) more transaction
fees. We also evaluate the gas consumption of our approach compared to assertion checks that
achieve the same effect on a dataset of contracts collected from previous work by Li et al. [47]. Our
results show that ConSol exhibits on average 0.34% higher overhead while offering significant
enhancements in modularity, readability, and maintainability.

To summarize, ConSol inherits the design-by-contract approach and has the following features:
• Non-intrusive: it does not alter the behavior of Solidity programs and programmers can write
(partial) specifications only when necessary.

• Effective: it monitors violations of specified conditions for both top-level functions and address
calls, regardless of how the address value flows in the program.

• Expressive: programmers can liberally write and enforce any computable properties.
• Efficient: compiled smart contracts incur minimal runtime monitoring overhead.

Contributions. This paper makes the following contributions:
• We introduce ConSol, an extension for Solidity that empowers programmers to specify and
enforce higher-order behaviors. We demonstrate ConSol’s design and use cases through
extensive examples (Section 3).

• We present the core formalization of ConSol and its translation semantics (Section 4). We
discuss its expressiveness, limitations, as well as soundness by characterizing the extent of
effective monitoring, providing a notion of when and where programmers can trust ConSol.

• We implement ConSol as a compiler that translates annotated programs into ordinary Solidity
programs (Section 5). We discuss optimizations that lead to minimal additional gas overhead.

• We examine 20 representative real-world attacks, showing the effectiveness of ConSol in
defending most attacks meanwhile exhibiting better readability (Section 6).

• We evaluate the efficiency of ConSol-annotated programs compared to manually implemented
assertions using 16 real-world attacks and a dataset from a previous study [47], showing that
ConSol only introduces up to 0.21% more gas consumption (Section 7).

We discuss the motivation and challenges in Section 2 and discuss related work in Section 8.

2 MOTIVATION AND CHALLENGES

In this section, we briefly introduce the basic concepts of blockchain and the Solidity, and discuss
the challenges for designing a specification and monitoring system dedicated to Solidity.

Smart Contract & Solidity. Smart contracts are self-running programs running on a blockchain
(e.g., Ethereum [15]) that enforces agreements without a third party. Actions on Ethereum are
conducted through transactions invoking functions of smart contracts. Solidity is a widely used
programming language for smart contracts with a syntax similar to Java. In Solidity, a contract is
organized akin to a class in Java, containing executable functions and data fields that are persistent
on the blockchain.

Role of Addresses. Addresses in Solidity, as unique identifiers for contracts or accounts, could
contain callable functions, providing a way to interact with other contracts and accounts. Functions

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 186. Publication date: June 2024.

Consolidating Smart Contracts with Behavioral Contracts 186:5

1 function getPrice(address chainklink) returns (uint256) {

2 (_, uint256 ethPrice, _, uint256 updatedAt, _) =

3 IChainlinkAggregator(chainlink).latestRoundData();

4 require(updatedAt > block.timestamp - 1 days);

5 require(ethPrice > 0);

6 uint256 price = ORACLE.getRate() * ethPrice;

7 require(price*0.95 < ORACLE.getLatestPrice() && price*1.05 > ORACLE.getLatestPrice());

8 return price;

9 }

(a) Source code with a readonly reentrancy vulnerability. Lines 7 is the fix with require, ensuring

the price fluctuation within 5%.

1 getPrice(chainlink) returns (price)
2 ensures price∗0.95 < ORACLE.getLatestPrice() && price∗1.05 > ORACLE.getLatestPrice()

3 where {
4 IChainlinkAggregator(chainlink).latestRoundData() returns (_, answer, _, updatedAt, _)
5 ensures updatedAt > block.timestamp − 1 days && answer > 0

6 }

9 function getPrice(address chainlink) returns (uint256) {

10 (_, uint256 ethPrice, _, _, _) = IChainlinkAggregator(chainlink).latestRoundData();

11 return ORACLE.getRate() * ethPrice;

12 }

(b) The fix with ConSol specifications (lines 1–6), decoupling the specification and business logic.

Fig. 1. Comparison of fixes for Sturdy (simplified) source code with assertions and ConSol specifi-

cation with enhanced readability and maintainability (see Section 6 for detailed analysis).

taking addresses as arguments become higher-order, as they can induce latent behavior depending
on the address arguments. For example, addresses can be used for implementing callbacks, allowing
for functions to be passed between contracts and executed as part of an atomic transaction.
However, careless use of addresses can lead to elusive vulnerabilities [61]. Developers have to

carefully design assertions for address calls, examining under what condition the address can be
invoked and the result of the invocation can be accepted. Moreover, the open-world distributed
execution of Ethereum exposes potentially untrusted adversarial parties without disclosed im-
plementations. Thus, security checks must be enforced when invoking functions depending on
addresses. However, there are several challenges in supporting a practical behavioral contract
system for Solidity.

Challenge: Writing Modular, Readable Specifications. How do programmers write down
specifications of addresses? The most straightforward way is to write low-level assertions. Figure 1a
shows such an example, where require statements in lines 4-5 are used to check the post-conditions
of the address call to latestRoundData(). However, using assertions has two major problems. First,
assertions are coupled with a specific call and are not modularly defined. If there are multiple calls
to the same address, assertions are duplicated, considered as a bad practice violating the “don’t
repeat yourself” principle [1]. Secondly, and perhaps more detrimentally, these assertions are often
woven directly into business logic, which places a cognitive burden on programmers and thus,
often worse, leads to negligence of critical checks. As a result, the readability and maintainability
of the codebase are adversely impacted.
In Section 3, we discuss the design of ConSol and demonstrate how it can disentangle smart

contract specifications from its implementation.

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 186. Publication date: June 2024.

186:6 Guannan Wei, Danning Xie, Wuqi Zhang, Yongwei Yuan, and Zhuo Zhang

Challenge: Tracking and Enforcing Address Behaviors. Enforcing first-order behaviors
for top-level functions is straightforward, e.g., using assertions or the modifier mechanism [77]
attached to top-level functions. However, such mechanisms cannot be directly applied to address
calls because addresses are first-class values that can be used as function arguments, return values,
stored into mutable states, or escaped to external contracts. This unlimited flexibility presents
the technical challenge of determining when and where to check and enforce address invocation
specifications. Simple syntactic identification (as modifiers) at call sites would not work, due to
indirect value flows. In addition, modifiermechanisms cannot check postconditions since modifiers
are only invoked before executing function bodies. Static flow analysis [73] could identify the target
addresses of calls, but it can be imprecise and expensive. Existing dynamic validation approaches
[20, 47] focus on contract-level global invariants, lacking fine-grained tracking of address behaviors
and a modular way to specify behaviors among functions.

In Section 3.3, we demonstrate how ConSol tracks and monitors latent address behaviors.

Challenge: Gas Efficiency. Moreover, compiled smart contract programs running on the
Ethereum Virtual Machine consume a finite resource known as “gas”. As a unit of measurement
for computational cost and storage on the EVM, gas is used to determine the fees associated with
executing transactions and running smart contracts. The gas cost for executing operations on the
EVM is designed to prevent abuse and ensure that the network remains secure and efficient.
Every instruction in the EVM consumes a certain amount of gas (known as gas units). These

instructions include simple arithmetic, address calls, storage operations, etc. Gas costs of storage
operations are temporally related, in the sense that the first time to load/store an EVM storage is
the most expensive, and the cost of later accesses is cheaper. It is also worth noting that the gas
cost of storage operations is usually the largest factor. Each unit of gas has a price, denominated in
ether (ETH). Users specify the gas price that they are willing to pay for each unit of gas when a
transaction is created.

Given the characteristics of EVM’s cost model, it is crucial to be efficient when generating code
to track and enforce runtime behaviors. In Section 5, we discuss the optimization used by ConSol
to ensure minimal storage and gas overhead.

3 CONSOL BY EXAMPLES

ConSol is a non-breaking extension for Solidity that additionally provides means to specify and
enforce behavioral contracts (we will often use specification for behavioral contracts to avoid
ambiguity). Now, we introduce the core features of ConSol with examples.

3.1 Contracts for First-Order Values

We begin with specifying preconditions and postconditions for functions involving first-order
arguments. Hereafter, we write ConSol specifications in italic serif style, and ordinary Solidity
program in sans-serif. Consider the following swap example that swaps the amount in of one
token to another token according to the current exchange rate. Callers can specify the minimal
amount min_out of the output token that they expect in case the exchange rate fluctuates.

swap(in, min_out) returns (out)
requires in > 0

ensures out >= min_out

function swap(uint in, uint min_out) returns (uint out) { ... }

The first three lines are ConSol specifications. The first line of the specification introduces
bindings for function swap’s argument in,min_out and return value out. The requires-clause specifies
the precondition to call swap, and the ensures-clause specifies the postcondition. Any occurrences

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 186. Publication date: June 2024.

Consolidating Smart Contracts with Behavioral Contracts 186:7

of in in the conditions refer to the actual runtime argument value from call-sites, and similarly,
occurrences of out refer to the actual return value at runtime.

Note that in the specification, binding names do not have to match those in the function definition
(although in the above example, they do). Similarly, types of arguments and returned values can
often be inferred from the definition, and thus are omitted.

Syntactic Sugars. We can liberally omit any part of the argument or return value specification,
e.g., the following specification omits the requires-clause for toWei (converting Ether to Wei, 1
Ether = 1018 Wei):

toWei(x) returns (_) ensures x < type(uint).max / 1e18

function toWei(uint x) returns (uint) { ... }

The above specification is equivalent to the core form where the omitted part is simply the Boolean
true expression:

toWei(x) returns (_) requires true ensures x < type(uint).max / 1e18

Dependent Contract. It is possible to write specifications where the postcondition depends on
the arguments. In other words, the scope of argument bindings spans both the precondition and
postcondition. For example, we can write the following condition to specify monotonicity for a
numeric function:

f(x) returns (y) ensures y > x

function f(int x) returns (int) { ... }

Any Expression is Allowed. When specifying the pre- or postconditions, programmers are free
to use any valid Solidity expression, including but not limited to function calls, memory operations,
and built-in special variables carrying important transaction data (e.g. msg.value) or metadata (e.g.
block.timestamp) whose values are only available at run-time.

For example, the following snippet examines the amount of Wei that is carried within msg.value

of the transaction as the pre-condition of buyTickets:
buyTickets(n) requires msg.value >= 1e15 ∗ n

function buyTickets(int n) payable { ... }

This liberty empowers programmers to check any computable properties depending on dynamic
information, which may be beyond the capability of static verification.

So far, these “flat” contracts for first-order values are straightforward. They provide a systematic
and readable way to write assertions wrapping around functions.

3.2 Contracts for Higher-Order Values

We next introduce ConSol’s distinct feature, i.e., specifying and enforcing rich conditions for
addresses.

Addresses as Numeric Values. Resembling pointers in C/C++, addresses in Solidity are nu-
merical values that can be compared or computed. Therefore, at the first approximation, the
specifications of addresses are no different from other integer values. For instance, we can assert
that the address argument value must be non-zero:

f(addr) requires addr != 0

function f(address payable addr) { ... }

Addresses as Latent Computation. However, addresses in Solidity have rich higher-order
behaviors: they represent deployed external Ethereum contracts that can be invoked. Suppose we
have a deposit function, which takes an address argument token and transfers money from that

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 186. Publication date: June 2024.

186:8 Guannan Wei, Danning Xie, Wuqi Zhang, Yongwei Yuan, and Zhuo Zhang

address. With ConSol, programmers can specify the condition of such latent address calls using a
where-clause without the need to touch the function body:

deposit(token, amount) requires msg.sender == owner

where {
IERC20(token).transferFrom(sender, addr, amount) returns (success)
requires amount > 0 ensures success

}

function deposit(address token, uint amount) public {

IERC20(token).transferFrom(...); // the call is now guarded

}

When token is considered an instance implementing the ERC20 token standard [87], we assert the
transfer must succeed and the transferred amount (the third argument) must be greater than zero.
We use the same requires- and ensures-clause syntax to specify pre- or postconditions of address
calls, same as in top-level functional specifications. A where-clause may contain multiple address
specifications, corresponding to multiple address arguments of a function.

Using ConSol we have decoupled specifying and enforcing the conditions — there is no need to
change the function body or manually insert checks around the call, resulting in more readable
and maintainable code.

Single Address, Multiple Callees. ConSol is expressive to specify conditions for multiple
target functions associated with a single address value. This can be done by specifying conditions
for different callable targets in the where-clause. Consider function f’s address argument addr, the
programmer can specify conditions for addr’s functions transfer and trade:

f(addr) where
{ addr.transfer(x) returns (success) requires x<=addr.balance }
{ addr.trade(msg, x) returns (success, rate) requires x>0 ensures success }

This flexibility allows programmers to effectively control and enforce distinct behaviors for
different target functions at a finer granularity.

Call Option Arguments. Address calls in Solidity can take additional special arguments such
as value and gas:
addr.call{value: 100, gas: 5000}(...);

Programmers can use ConSol to specify the conditions of these call option arguments by introduc-
ing additional bindings using the familiar syntax that is used in Solidity:

addr.vote{value: v, gas: g}(msg, amount) requires v>=0 && v<=addr.balance

where binding names v and g represent the actual Ether transfer value and gas value, whose names
can be referenced in requires/ensures-clauses.

Low-Level Calls. We have presented how ConSol can be used to specify and enforce conditions
of high-level address calls, where signatures of the callees are available. Another form of calls in
Solidity is low-level calls, where the callee signature and arguments are encoded as raw bytes data:
bytes memory data = ...

(bool success, bytes memory result) = addr.call(data)

With ConSol and Solidity’s decode functionality, programmers can enforce the behaviors of
low-level calls by attaching specifications to the raw data. For example, by writing preconditions as
a standalone function (recall that conditions can be any expression), we can examine the encoded
signatures and arguments in a separate function and check it in the requires-clause:
function checkPreCond(bytes memory data) returns (bool) {

// check if data encodes ERC20 protocol:

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 186. Publication date: June 2024.

Consolidating Smart Contracts with Behavioral Contracts 186:9

if (bytes4(data[:4]) != bytes4(ERC20SignatureData)) return false;

(uint256 n, address a) = abi.decode(data[4:], (uint256, address));

... // check the actual arguments n and a

}

addr.call(data) requires checkPreCond(data) // precondition of addr.call, postcondition omitted

Higher-Order Functions. Likewise, to addresses, functions in Solidity are first-class values, i.e.,
they can be used as arguments of, or returned from other functions. However, as of Solidity 0.8.20,
the support for first-class functions is limited to explicitly defined top-level functions. Writing
anonymous functions (lambda expressions), nested functions, or named functions that capture
variables from environments have not been supported. This restriction prohibits real closure values
with lexical scopes (as familiarized by functional programmers). While our approach to monitoring
addresses could be extended to functions, due to the restriction of Solidity, higher-order functions
are rarely used in Solidity programs. Therefore, in this paper, we focus on the contracts and
monitoring of address values, and leave the monitoring for higher-order functions as future work
once Solidity has proper support for lambda expressions [33].

3.3 Persistent Monitoring

ConSol features persistent monitoring of address specifications, i.e., guarded addresses are first-
class citizens too – passing to other functions or returning from functions preserve the attached
conditions. These conditions will be checked whenever the address is called, even remotely from
where the conditions were attached.

Passing Guarded Addresses. In the following example, the programmer has attached specifi-
cations to the public function deposit but not to function actualDeposit. The private function
actualDeposit consumes the address passed from deposit and transfer an amount of money to
the address.

deposit(token, amount)

where { IERC20(token).transferTo(addr, amt) requires amt > 10 }

function deposit(address token, uint amount) public {

address token2 = token;

actualDeposit(token2, amount - 10);

}

function actualDeposit(address token2, uint amount) private {

IERC20(token2).transferTo(.., amount); // call happens here

}

Although the condition for address token is specified for deposit, the call of transferTo happens
remotely in actualDeposit, via indirect value flows.ConSol ensures the precondition of the address
call (amt >= 0) attached from deposit is preserved and checked in actualDeposit.

The function actualDepositmay be invoked through a different control-flow path, e.g., by other
functions. In such cases, different conditions may be checked, depending on the actual address
argument token2.

Returning Guarded Addresses. Addresses attached with specifications can be returned from
functions too. For example, a function can return a guarded address whose specification was
attached at a previous point, e.g., by other functions or at the time when the address is used as an
argument. Consider this identity function of addresses, which requires its address argument to be
monotonic when called:
interface IMono { function f(int) returns (int); }

id(addr1) returns (addr2)

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 186. Publication date: June 2024.

186:10 Guannan Wei, Danning Xie, Wuqi Zhang, Yongwei Yuan, and Zhuo Zhang

where { IMono(addr1).f(x) returns (y) requires y >= x }

function id(address addr1) returns (address) { return addr1; }

Then, when addr1 is returned to the caller of id, the same condition is still attached. At a later
point, when the received address is invoked, the monotonic check is preserved and enforced.
It is possible to directly attach conditions to the returned address. Using the same “identity”

function as an example, we can specify monotonicity of the returned address addr2 (instead of addr1)
in this way:

id(addr1) returns (addr2) where { I(addr2).f(x) returns (y) requires y>=x }
Similarly, when later the received address is invoked, themonotonic check is preserved and enforced:
address c = id(...)

int y = IMono(c).f(x) // checks condition y >= x

It is also possible to attach different preconditions and postconditions to the same address value.
Allowing attaching persistent specifications to return addresses is a powerful notion. Addresses

may flow through the business logic of contracts. ConSol liberates developers from meticulously
tracking address flows and verbosely checking the critical conditions at every address call site.
Consequently, developers can focus on the overall business logic, delivering code with improved
readability and maintainability (see case studies in Section 6).
Additionally, a guarded address can be stored in storage, retrieved, and called later. When the

call happens, ConSol preserves the checks as they are remotely specified.

Extent of Effective Monitoring. In Section 4.3, we discuss how ConSol implements persistent
address specification monitoring using a whole program transformation. Nevertheless, there are
cases where tracking specifications attached to addresses becomes impossible in a distributed
setting, e.g., when a guarded address value is passed to another external contract program that is
unknown to ConSol. In such cases, ConSol cannot monitor how the external contract program
uses the address since our approach relies on a source-to-source program transformation. However,
programmers can still trust ConSolwithin the scope of the annotated contract programwith source
code available. ConSol ensures effective and persistent monitoring of address specifications as
long as the address calls happen within the current contract. In Section 4.5, we depict the boundary
of effective monitoring after explaining the translation semantics.

4 FORMAL MODEL

To articulate how ConSol works, we present a core model _ConSol, modeling the essence of our
approach in implementing behavioral contracts for Solidity. Modulo minor syntactic difference,
_ConSol is entirely a subset of Solidity. This section presents _ConSol’s abstract syntax, static, and
translation semantics, which guide the actual implementation (Section 5). We also discuss expres-
siveness, limitations, as well correctness issues in this section.

4.1 Syntax

Figure 2 shows the abstract syntax of _ConSol, modeling the essential parts of Solidity.

Types. _ConSol’s type universe contains integers, unsigned integers, booleans, and addresses.
Aiming for minimality, we omit compound data types such as mappings and structs. However, our
presented formalization can be extended with mappings and structs too.

Top-Levels. At the top level, a contract C consists of field declarations and function definitions.
These fields (type-and-identifier) declarations specify storage states, which are persistent data on
the blockchain. As in other languages, a function definition consists of its name, parameters, return
types, and its body. To model boundaries between multiple smart contracts, a function can be either

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 186. Publication date: June 2024.

Consolidating Smart Contracts with Behavioral Contracts 186:11

𝑛 ∈ Z 𝑏 ∈ B 𝑥,𝑦, 𝑓 , ^ ∈ Id

DataTypes 𝑡, 𝑟 := unit | int | uint | bool | address | . . .
Type Decl 𝑑 := 𝑡 𝑥 Values 𝑣 := 𝑛 | 𝑏
Assignable 𝑎 := 𝑑 | 𝑥 Target 𝜏 := 𝑓 | ^(𝑥).𝑓
Expressions 𝑒 := 𝑥 | 𝑣 | 𝑒 𝑜𝑝 𝑒 | 𝑓 (𝑒∗) | ^(𝑒).𝑓 (𝑒∗)
Statements 𝑠 := 𝑑 | 𝑒 | 𝑠; 𝑠 | 𝑎 = 𝑒 | return 𝑒

| if (𝑒) { 𝑠 } else { 𝑠 }

Spec 𝜎 := 𝜏(𝑥∗) : (𝑦∗)requires 𝑒 ensures 𝑒 where 𝜎∗

Modifiers𝑚 := public | private
Fun Decl 𝑑𝑓 := fun 𝑓 (𝑑∗) : (𝑟∗)𝑚
Fun Def F := 𝜎 𝑑𝑓 { 𝑠 }

Contract C := contract ^ { 𝑑∗; F ∗ }

Interface I := interface ^ { 𝑑∗
𝑓
}

Fig. 2. The abstract syntax of _ConSol.

Expression Translation EJ·K
EJ𝑥K = 𝑥

EJ𝑣K = wrap(𝑣)
EJ𝑒1 𝑜𝑝 𝑒2K = unwrap(EJ𝑒1K) 𝑜𝑝 unwrap(EJ𝑒2K)
EJ𝑓 (𝑒, . . .)K = 𝑓

guard
(EJ𝑒K, . . .)

EJ^ (𝑒
addr

).𝑓 (𝑒, . . .)K = dispatch
^
𝑓
(EJ𝑒

addr
K, EJ𝑒K, . . .)

Statement Translation SJ·K
SJ𝑡 𝑥K = 𝑡↑ 𝑥 SJ𝑒K = EJ𝑒K

SJ𝑡 𝑥 = 𝑒K = 𝑡↑ 𝑥 = EJ𝑒K SJ𝑥 = 𝑒K = 𝑥 = EJ𝑒K

SJ𝑠1; 𝑠2K = SJ𝑠1K; SJ𝑠2K SJreturn 𝑒K = return EJ𝑒K

SJif (𝑒) { 𝑠1 } else { 𝑠2 }K = if (EJ𝑒K) { SJ𝑠1K } else { SJ𝑠2K }

Fig. 3. The translation semantics of _ConSol (statements and expressions).

public or private. A public function can be called by other contracts, and private functions can
only be called within its defining contract. In _ConSol, a specification 𝜎 is attached to every function.
Interfaces can be declared to specify the interaction between contracts. They contain function

declarations and provide expected types of arguments and return values for address calls.

Statements and Expressions. The body of functions is simply a statement. A statement can be
a type-and-identifier declaration (uninitialized), an expression (e.g. calling a function for its side
effects), a composition of two statements, an assignment, a return statement, a revert statement,
or a conditional statement. Both type-and-identifier declarations or identifiers can be used as
assignable (i.e., left-hand side of assignments). A revert statement aborts the execution, reverting
any changes made to the blockchain state.

An expression can be an identifier, a literal value (e.g., numbers), a binary operation, a function
call, or an address call. Function calls over addresses have form ^(𝑒1).𝑓 (𝑒2, . . .), where 𝑒1 is the
target callee expression that yields an address value, 𝑓 is the function name defined in the interface
^, and 𝑒2, . . . denotes the arguments.

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 186. Publication date: June 2024.

186:12 Guannan Wei, Danning Xie, Wuqi Zhang, Yongwei Yuan, and Zhuo Zhang

Function Translation FJ·K
FJ𝑓 (𝑥1, . . .) : (𝑦1, . . .)requires 𝑒1 ensures 𝑒2 where (𝜎1, . . .)
fun 𝑓 (𝑡1 𝑥1, . . .) : (𝑟1, . . .)𝑚 { 𝑠 }K =
fun 𝑓 (𝑡1 𝑥1, . . .) : (𝑟1, . . .)𝑚 {

return unwrap(𝑓
guard

(wrap(𝑥1), . . .)) }

fun 𝑓pre(𝑡
↑
1 𝑥1, . . .) : () private { require(EJ𝑒1K) }

fun 𝑓post(𝑡
↑
1 𝑥1, . . . , 𝑟

↑
1 𝑦1, . . .) : () private { require(EJ𝑒1K) }

fun 𝑓
guard

(𝑡
↑
1 𝑥1, . . .) : (𝑟↑1 , . . .) private {

𝑓pre (𝑥1, ...)
attachSpec(𝑥1, ..., 𝜎1, . . .)

(𝑟↑1 𝑦1, ...) = 𝑓
worker

(𝑥1, . . .)
attachSpec(𝑦1, ..., 𝜎1, . . .)
𝑓post (𝑥1, . . . , 𝑦1, . . .)
return (𝑦1, . . .) }

fun 𝑓
worker

(𝑡
↑
1 𝑥1, . . .) : (𝑟↑1 , . . .) private { SJ𝑠K }

Fig. 4. The translation semantics of _ConSol (functions).

Specifications. Specifications are attached to top-level functions. Each specification 𝜎 designates
a target, which is either a top-level function or a function call to addresses. When specified for ad-
dresses, an interface name is required to provide the signature of the corresponding target function.
In addition, a specification introduces bindings for arguments and return values. As introduced
in Section 3, the pre- and post-condition are denoted in the requires-clause and ensures-clause,
respectively. In the where-clause, programmers can specify the conditions for addresses appeared
as arguments or return values, using the same syntax as that for top-level function specifications.

4.2 Static Semantics

The syntax permits arbitrary expressions to appear as pre- and post-conditions. However, not all
possible expressions are valid executable specifications. For example, an arithmetic expression
requires x + 1 is meaningless if used as a condition. The static semantics in the form of a type system
concerns when a specification should be considered well-formed.
The general typing judgment takes the form of Γ ⊢ 𝑒 : 𝑡 , where Γ is the typing environment,

𝑒 is the program, and 𝑡 is its type under Γ. For our purpose, the pre- and post-condition should
be of type Boolean, and only use well-scoped variables. Since _ConSol is a subset of Solidity and
additionally introduces specification forms, Figure 5 only shows typing rules relevant to function
and address specifications, and the typing for the rest of the language is omitted, which can be
built atop other existing works [7, 26, 45, 69].

The specification typing judgment takes the form of Γ ⊢ 𝜎 : 𝑑𝑓 , where Γ is the typing environment,
𝜎 is the specification, and 𝑑𝑓 is the declaration of the target function. The c-top rule examines
contract well-formedness by checking if the specification attached to each function is well-typed.
The f-spec rule checks if the annotated specification matches the actual function declaration. It
also checks if pre-conditions, post-conditions, and address specifications are well-typed. Similarly,
a-spec checks address specifications against the callee function defined in the declared interface.

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 186. Publication date: June 2024.

Consolidating Smart Contracts with Behavioral Contracts 186:13

Specification Typing

Γ(𝑥addr) = address Γ′ = Γ, 𝒙𝑖 : 𝒕𝑖 Γ′′ = Γ′, 𝒚 𝑗 : 𝒓 𝑗
Γ′ ⊢ 𝑒1 : bool Γ′′ ⊢ 𝑒2 : bool

Γ ⊢ ^ (𝑥addr) .𝑓 (𝒙𝑖) : (𝒚 𝑗) requires 𝑒1 ensures 𝑒2 :
fun 𝑓 (𝒕𝑖 𝒙′𝑖) : (𝒓 𝑗)𝑚

(a-spec)

Γ′ = Γ, 𝒙𝑖 : 𝒕𝑖 Γ′′ = Γ′, 𝒚 𝑗 : 𝒓 𝑗
Γ′ ⊢ 𝑒1 : bool Γ′′ ⊢ 𝑒2 : bool

∀𝑘, Γ′′ ⊢ 𝜎𝑘 : 𝑑𝑓exn s.t. target(𝜎𝑘) = ^ (𝑥addr).𝑓exn ∧ 𝑑𝑓exn ∈ ^

Γ ⊢ 𝑓 (𝒙𝑖) : (𝒚 𝑗) requires 𝑒1 ensures 𝑒2 where 𝝈𝑘 :
fun 𝑓 (𝒕𝑖 𝒙′𝑖) : (𝒓 𝑗)𝑚

(f-spec)

Γ′ = Γ, id(𝒅𝑖) : type(𝒅𝑖), id(F 𝑗) : decl(F 𝑗)
∀𝑗, Γ′ ⊢ spec(F𝑗) : decl(F𝑗)
Γ ⊢ contract ^ { 𝒅𝑖; F 𝑗 }

(c-top)

Fig. 5. Static semantics (excerpt) of _ConSol specifications. Only checkings relevant to specifications

are shown.

4.3 Translation Semantics

Figure 3 defines the semantics of specifications by transforming specification-annotated programs
to ordinary programs. This process orchestrates and inserts assertions when appropriate. We
use syntax-directed translation functions FJ·K, SJ·K, EJ·K to define the translation of functions,
statements, and expressions, respectively.

Translating Types. One of the key goals of ConSol is to provide persistent monitoring of
address behaviors. To realize this, the translation designates a new type and value representation
for a guarded address, so that (1) specification provenance is always kept along with the original
address within the current contract, and (2) operations on the original address preserve their results.
Given an ordinary type 𝑡 from untranslated programs, we use 𝑡↑ to denote its translated type.

For example, address is the naked type, and address↑ is the address type that can be attached
with specifications. For primitive types other than address, 𝑡↑ can be equal to 𝑡 . For compound
data types such as arrays, 𝑡↑ should be recursively defined (the formalization has not modeled
compound data types for brevity, but there is no technical difficulty to accommodate compound
data types). Moreover, a pair of runtime functions wrap() and unwrap() is used to convert between
values of type 𝑡 and 𝑡↑, satisfying the following conditions:

Γ ⊢ 𝑒 : 𝑡 ⇔ Γ ⊢ wrap(𝑒) : 𝑡↑

Γ ⊢ 𝑒 : 𝑡↑ ⇔ Γ ⊢ unwrap(𝑒) : 𝑡
unwrap ◦ wrap = id

The conversions are useful when (1) performing primitive operations, and (2) communicating
values across the boundary between ConSol’s monitored world and the external wild world.

At this moment, we intentionally keep the notion 𝑡↑ abstract, i.e., not giving its concrete definition,
since multiple representations with their wrap/unwrap functions could work. A naive way to
represent a guarded address is to use a struct that stores the original address and the encoding
of the attached specifications. However, this scheme introduces additional storage overhead. In
Section 5, we discuss the implementations and optimizations that do not introduce storage overhead

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 186. Publication date: June 2024.

186:14 Guannan Wei, Danning Xie, Wuqi Zhang, Yongwei Yuan, and Zhuo Zhang

for practical scenarios. Since the address type is pervasively used in the program, our approach
implements a whole-program translation.

Translating Functions. To translate an annotated function 𝑓 , ConSol generates an interposi-
tion layer that orchestrates runtime checks (Figure 4). The main job is performed in 𝑓guard, which
checks pre- and post-conditions, attaches specifications (from the where-clause) to address values,
and invokes the actual function 𝑓worker, whose body is recursively translated. We also rewrite call-
sites of 𝑓 so that 𝑓guard is invoked. 𝑓𝑝𝑟𝑒 and 𝑓𝑝𝑜𝑠𝑡 enforces the pre- and post-conditions respectively
and aborts the call if a condition is violated.

Additionally, a function 𝑓 with the same name and signature as the original function is generated.
This is used only for external calls (if the 𝑓 is public), which does not observe our translated value
representation for addresses.
The attachment of specifications to addresses is performed by attachSpec at run-time, whose

implementation depends on the representation of guarded addresses.

Translating Statements and Expressions. ConSol translates statements and expressions
in a recursive fashion (Figure 3). Most cases of statement translation are straightforward; they
recursively apply the translation to subcomponents. Declared types 𝑡 are lifted to 𝑡↑ to carry
specifications if necessary.
For binary operations, we first recursively translate the operands, and apply unwrap to the

operands at run-time. Since the attachment of specifications to address values has changed the
underlying value representation, this is necessary to ensure our translation preserves the results
of these operations. For example, consider an address value 𝑥 that has been attached with two
different specifications, producing two different guarded address values 𝑥1 and 𝑥2. The programmer
should expect that equality is preserved 𝑥1 == 𝑥2, which only holds after unwrapping. In general,
unwrap should be applied when performing operations other than method calls over values.
Direct function calls are replaced with their guarded counterparts 𝑓guard with arguments being

translated recursively. Address calls ^ (𝑒addr).𝑓 are replaced with calls to dispatch
^
𝑓
, which takes

the address value 𝑒addr in addition to the ordinary arguments as arguments. The dispatch function
inspects the specification provenance carried along with the underlying address value and performs
the corresponding pre-/post-condition checks before and after the address calls.

Runtime Facilities. Our translationworks against a set of runtime functions, includingwrap and
unwrap that convert value representations, attachSpec that encodes specification provenance into
the underlying guarded address values, and dispatch that decodes specifications and performs corre-
sponding checked address calls. Note that dispatch is a family of functions that are specialized over
the callee function 𝑓 and its containing interface ^. Since dispatch makes address calls to external
contract instances, it applies unwrap to arguments before interacting with worlds outside ConSol’s
monitoring boundary. In Section 5, we describe the implementation of attachSpec and dispatch.

4.4 Expressiveness and Limitations

ConSol aims to provide rich expressiveness thus allowing programmers to use the same host
language to write down the pre/post-conditions as executable boolean expressions. For example,
to specify the correctness of ERC20 contracts, the programmer needs to reason about the content
of an entire mapping, which can be defined as a ghost state with a loop to compute the sum of
a map/array. However, as a contract and monitoring system, what ConSol really provides is an
interposition layer, which intercepts runtime events of interest and relays them to the monitoring
system [30]. However, not all events in smart contracts can be intercepted with a reasonable cost,
and the events we are interested in this work are function call/return behaviors (as in many other

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 186. Publication date: June 2024.

Consolidating Smart Contracts with Behavioral Contracts 186:15

Third-party contract

Contract translated by ConSoL

public
wrapper

private/
monitored private/

monitored

private/
monitored

…

Monitoring Boundary unwrap

unwrap

wrap

monitored calls
unmonitored calls

Third-party contract

Fig. 6. Monitoring boundary of guarded address calls.

behavioral contract systems), with a more specific focus on calls made to first-class address values,
which are important in smart contracts since address calls are the main way to communicate
between multiple contract instances.

Although checking temporal properties is not our design goal in this paper, it is an interesting and
useful category of behaviors especially for DeFi applications. In contrast to ordinary specifications
that inspect a single event, “temporal” specifications inspect traces of events. Our current design does
provide low-level mechanisms to encode temporal properties, which however can be inconvenient.
For example, the programmer needs to manually declare state variables to capture/store the changes
in the value of interest, which then can be checked in pre/post conditions. Integrating orthogonal
work in temporal/trace contracts [31, 55] would be an interesting future extension for ConSol.

In terms of the obligations/guarantees of program components (client/supplier), another non-
goal of our design is to enforce global invariants of smart contracts. These global invariants are
usually expressed with quantifiers [47], but sometimes specify a different aspect of the specification.
Additionally, inspecting local variables or intermediate results within a function is still useful and
important, but a design-by-contract approach focusing on interfaces would not fit this purpose.

4.5 Correctness

Our translation preserves the behaviors of the original program, in the sense that if the ConSol-
translated program does not raise ConSol-related errors, then we observe the same result and
state on the original program. Our translation also ensures that any violation will be detected (thus
the execution will be reverted) within the boundary of the current contract. Figure 6 demonstrates
the monitoring boundary of _ConSol with the blue dashed scope.
For top-level functions, it is straightforward to see that their invocations are relayed to their

guarded versions, and thus are correctly monitored. For guarded addresses, there are three possible
ways to unwrap the value (losing the attached specification) it in our translation: (1) the address
value is used in primitive operations (e.g. checking equality) within the current contract, (2) the
address value is returned to other contract instances via a public function (Figure 4), and (3) the
address value is passed as an argument (thus unwrapped by dispatch) to other contract instances.
For case (1), the unwrap is benign and it does not hinder our guarantee to monitor potential
violations. For cases (2) and (3), we say the guarded address has escaped the monitoring boundary
(demonstrated in Figure 6), and there is no way to examine its behavior once the address is used
in other closed-source smart contract programs. However, if the source code of these contracts
is available, our approach can be indeed extended to multiple contracts, which would provide a
guarantee to monitor address calls across multiple contracts.

Our formalization also translates user-provided condition expressions (Figure 4), which provides a
stricter semantics (known as the “picky” contract semantics [11]) to allow using guarded addresses to
define conditions, which can capture more potential violations compared to “lax” contract semantics.

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 186. Publication date: June 2024.

186:16 Guannan Wei, Danning Xie, Wuqi Zhang, Yongwei Yuan, and Zhuo Zhang

Table 1. Summary of studied cases. LR denotes LoC Reduced.

Project Date Loss ($) Root Cause of Vulnerability LR (%)
Qubit [17] 01-28-22 80M Zero Address Function Call 15.38
TecraSpace [80] 02-04-22 63K Any Token is Destroyed 50.00
Umbrella [86] 03-20-22 700K Integer Over/Underflow 33.33
XCarnival [90] 06-26-22 3.87M Infinite Number of Loans 26.32
BadGuys [65] 09-02-22 NFT Missing Airdrop Eligibility Check 94.12
EFLeverVault [50] 10-14-22 1M Business Logic Flaw 25.00
N00d [8] 10-26-22 29K Reentrancy 11.11
Dexible [61] 02-17-23 1.5M Arbitrary External Call 11.76
SushiSwap [72] 04-09-23 3.3M Unchecked User Input 54.55
SwaposV2 [18] 04-16-23 468K Erroneous Accounting 25.00
Unknown [81] 05-31-23 111K Missing Slippage Check 30.00
Sturdy [9] 06-12-23 800K Readonly Reentrancy 57.14
LEVUSDC [28] 06-15-23 105K Access Control 33.33
AzukiDAO [70] 07-03-23 69K Invalid Signature Verification 48.15
Bao [6] 07-04-23 46K Inflation Manipulate 83.33
Miner [54] 02-15-24 466K Lack of Validation 83.33
YearnFinance [5] 04-13-23 11.6M Misconfiguration -
ZunamiProtocol [44] 08-14-23 2M Price Manipulation -
KyberSwap [10] 11-22-23 48M Precision Loss -
Time [67] 12-06-23 188.9K Arbitrary Address Spoofing Attack -

5 OPTIMIZING GAS EFFICIENCY IN IMPLEMENTATION

Implementation. We implement ConSol as a preprocessor of Solidity programs annotated with
ConSol’s specifications. Given an input program, ConSol generates a Solidity program following
the translation outlined in Section 4. The output programs can be compiled and deployed using
off-the-shelf Solidity toolchains without any further modification. ConSol is implemented with
solc-typed-ast [25], which can also reify a modified AST back to a Solidity program.

Our implementation handles a few more Solidity features that are not covered by the formaliza-
tion, e.g., mappings, structs, and low-level calls. Additionally, programmers can attach specifications
to storage fields, which can be desugared to core forms. This is useful to produce guarded addresses
at contract initialization time.

Optimizations. As discussed in Section 4.3, the translation presented in Figure 3 works with a
set of runtime functions. These functions cooperate with the runtime representation of guarded
addresses. We now discuss an optimized implementation that does not incur additional storage
overhead in the generated code.
The optimization exploits the fact that the smallest unit for storage is 256 bits in the Ethereum

Virtual Machine. In fact, storing or loading data that are smaller than 256 bits incurs the same gas
overhead as that of 256 bits. Moreover, the size of an address is 160 bits, which spares an additional
96 bits that can be used to encode specifications up to 96 predicates. Therefore, we use uint256
to represent guarded addresses, where the 96 most significant bits (MSBs) encode the attached
specifications and the rest 160 bits are preserved for addresses.
With this representation, our translation assigns numeric identities to possible conditions that

will be attached to addresses. The correspondence between the assigned numeric identities and their
runtime checking functions are emitted in the generated code, which is used for dispatching. Those
runtime functions then can be implemented straightforwardly: Thewrap function coerces a uint160
to uint256, and unwrap function discards the 96 MSBs of an uint256 value. The attachSpec function
only modifies the 96 MSB of a guarded address representation, i.e., sets the bit that represents the
intended condition. The dispatch function can check which bits in the 96 MSBs of the guarded
addresses are set, therefore delegating the actual validation to the runtime predicate function.

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 186. Publication date: June 2024.

Consolidating Smart Contracts with Behavioral Contracts 186:17

1 IERC20(token).transferFrom(_, _, _) returns (ret) requires ret
2 IERC20 public immutable token;

3 withdraw(n, user) requires canOperate(msg.sender, user) && balances[user] >= n

5 function withdraw(uint256 n, address user) {

6 require(canOperate(msg.sender, user));

7 balances[user] = balances[user] - n;

8 bool success = token.transferFrom(address(this), user, n);

9 require(success)

10 }

11 function deposit(uint256 n, address user) {

12 bool success = token.transferFrom(user, address(this), n);

13 require(success);

14 }

Fig. 7. Simplified code for Umbrella. The patched ConSol specification is highlighted in blue,

eliminating the low-level assertions (in red). The additional condition to fix the bug is underlined.

Of course, this approach is limited by the total number that can be squeezed into 96 bits. It is
straightforward to see that the total number of conditions attached to all addresses cannot exceed
96. However, so far, we have not encountered real cases that need to use more than 96 address
conditions. If there are more conditions specified by the user, a translation could make use of more
bits to store the encoding of specifications, at the cost of more gas consumption.

6 CASE STUDIES

This section showcases ConSol’s expressiveness and effectiveness using 20 real-world smart con-
tract attacks ($154.32M total loss) and defenses. We first provide an overview of the case study,
then delve into three representative cases, illustrating how ConSol specifications concisely and
non-intrusively express security defenses, decoupling from the primary business logic.

Benchmark Selection. We select a set of benchmarks and attacks from a reputable database of
blockchain incidents [82], which is widely used in the literature [46, 92, 93] to study security issues
in smart contracts. Our selection emphasizes the prevalence of the case in practice, the diversity
of root causes, and the impact (e.g. value of loss) of these attacks. As a result, we select 20 past
incidents with attack types and losses summarized in Table 1. The first three columns of the table
present the project names, attack dates, and their corresponding financial losses.

Methodology. We analyze each attack, identify the root cause, and pinpoint the vulnerable func-
tion. We first evaluate whether it is possible to use assertions to patch the underlying vulnerability
for each attack. If so, we implement the most appropriate patch using low-level assertions (as
suggested by postmortem incident reports from third-party auditors [24, 85]), and then migrate the
patch using ConSol. To validate the patches, we employ an Ethereum Archive Node [59] to replay
all historical transactions on both patched contracts (assertion-based and ConSol-based), ensuing
legitimate transactions succeed while blocking the malicious ones.

Results Overview. We conclude that 16 of the attacks (i.e., the upper part of Table 1) can be
prevented using ConSol, while the remaining 4 attacks (i.e., the lower part in the table) cannot
be prevented with assertions, thus ConSol cannot be used to defend them either. Column “LR” in
Table 1 denotes the percentage of LoC reduced from migrating assertion-based patches to Con-
Sol specifications, if applicable. On average 42.6% LoC in the assertion-patched functions can be
expressed as specifications with ConSol. Since a substantial portion of these functions is dedicated

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 186. Publication date: June 2024.

186:18 Guannan Wei, Danning Xie, Wuqi Zhang, Yongwei Yuan, and Zhuo Zhang

Table 2. Gas consumption on vulnerable contracts in D2, patched with assertions and ConSol. GFI:

gas fee increase ($). GIR: gas increase ratio after patching to the original.

Project #Tx

by Assertions by ConSol

GFI ($) GIR (%) GFI ($) GIR (%)

Qubit [17] 0 - - - -
TecraSpace [80] 4245 0.000 0.000 0.000 0.000
Umbrella [86] 58 0.001 0.111 0.001 0.015
XCarnival [90] 365 0.016 0.029 0.040 0.072
BadGuys [65] 950 0.003 0.096 0.005 0.166
EFLeverVault [50] 21 0.027 0.089 0.031 0.102
N00d [8] 111 0.009 0.547 0.009 0.571
Dexible [61] 54 0.126 0.230 0.178 0.324
SushiSwap [72] 202 0.007 0.099 0.007 0.106
SwaposV2 [18] 7 0.003 0.048 0.004 0.068
Unknown [81] 10 0.381 0.002 0.438 0.003
Sturdy [9] 23 0.940 1.126 0.941 1.128
LEVUSDC [28] 45 0.008 0.042 0.008 0.044
AzukiDAO [70] 2937 0.019 0.227 0.022 0.257
Bao [6] 15 0.001 0.005 0.002 0.018
Miner [54] 3922 0.002 0.007 0.011 0.030
Avg. - 0.079 0.178 0.113 0.211

to validation, ConSol appears to be an ideal tool to decouple validations from business logic, hence
improving readability and maintainability.
Four attacks cannot be defended with assertions for various reasons. For the YarnFinance [5]

attack, the contract is not properly configured and deployed, so even assertions cannot be used to
check if the contract is configured properly. The ZunamiProtocol [44] attack is caused by price
manipulation, where the victim contract depends on the token price provided by external contracts,
which are manipulable by attackers. KyberSwap [10] contract improperly rounds down integer
division calculations in its logic, thus causing a precision loss in the contract state. The vulnerability
behind ZunamiProtocol and KyberSwap is the design flaws of the contract and thus cannot be
patched with assertions. The Time [67] attack is caused by a vulnerability in the Openzeppelin
library used in the contract. The vulnerability lies in the upstream of the software supply chain
and cannot be fixed in the attacked contract itself.

Case 1: Integer Underflow. We first use integer underflow, a notorious vulnerability type, as
an example to demonstrate ConSol’s effectiveness in expressing the defense. Figure 7 depicts a
simplified code snippet from the Umbrella project. Specifically, the Umbrella project offers a staking
service where users can stake and unstake their tokens through the deposit (lines 11-14) and
withdraw (lines 5-10) functions, respectively. The withdraw function updates the balances of a
user (line 7), transfers the staked tokens (line 8), and finally checks if the transfer is successful (line
9). We skip the details of the deposit function, except for its operation involving the transfer of
tokens (lines 12-13), as well as several other functions operating on token transfers for simplicity.
Attack. The vulnerability resides at line 5, where the attacker attempts to withdraw a large quantity
of their staked tokens. This action induces an integer underflow in balance[user]-n, leading to
an anomalously large balance[user] for the attacker. Consequently, the attacker can transfer as
many tokens as they wish.
ConSol-Patch. One effective patch to fix this vulnerability is to guard withdrawwith a precondition
balance[user] > n. However, considering the number of security validations that must be placed
around every invocation of token.transferFrom, there is a heightened risk that developers over-
look these subtle checks for integer underflow. As depicted in Figure 7, ConSol’s solution to this

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 186. Publication date: June 2024.

Consolidating Smart Contracts with Behavioral Contracts 186:19

issue is to attach specifications to both function withdraw and calls of address token (line 1). As a
result, there is no need to repeatedly write validation code checking the same condition in multiple
locations, since the storage address is persistently guarded, thanks to our whole-program translation.
This strategy reduces duplicated assertions currently interspersed across various invocation

sites. Moreover, by moving all validation logic from withdraw function to modularly defined
specifications, it enhances the readability of both the business and validation logic.

Case 2: Readonly Reentrancy. Readonly reentrancy represents another notorious class of
vulnerabilities. We use the Sturdy [34] project to illustrate how ConSol can enhance readability
and potentially help prevent such vulnerabilities.

Attack. Figure 1a shows the simplified getPrice function from the Sturdy contract, which de-
termines the price of the Sturdy token. The returned price of getPrice function is proportional
to Ether price, which ratio is informed by ORACLE.getRate (line 7). However, the return value
of ORACLE.getRate (Figure 8) can be manipulated by attackers, exploiting the fact that getRate
(line 1, Figure 8) returns a ratio of this.balance / totalSupply. The ratio can be manipulated
by providing a malicious callback to the withdraw function (line 2-6, Figure 8), which first em-
ploys a low-level call to transfer the requested Ether amount back to msg.sender. Nevertheless,
this low-level call allows msg.sender to callback getPrice before withdraw finishes its update to
totalSupply. At this moment, the nominator of the ratio, this.balance, has been lowered by
the Ether transfer, causing that getRate yields an abnormally lower value. This, in turn, leads to
getPrice returning a deflated value. Given that smart contracts rely on precise token prices, such
miscalculations due to this vulnerability can result in significant financial losses.

ConSol-Patch. The fix to this issue is to cross-validate getPrice with the latest Sturdy price, which
can be accessed from ORACLE.get-LatestPrice. In ConSol, this check can be concisely expressed
by a post-condition (line 2 in Figure 1b).

Case 3: Refactoring Uniswap. We also conduct an empirical study to see how ConSol can be
used in supporting smart contract development process. We report our experience in refactoring
the Uniswap V2 [2] and V3 [3] protocols using ConSol.

Our focus is specifically on refactoring the UniswapV2Pair and UniswapV3Pool contracts while
leaving other periphery and library contracts unchanged. The UniswapV2Pair and UniswapV3Pool

contracts contained 10 and 20 primitive assertions in their bodies, respectively. Our goal is to lift
these primitive assertions toConSol specifications (for functions and addresses). Remarkably, we lift
all primitive assertions in the UniswapV2Pair contract and 14 out of 20 (70%) in the UniswapV3Pool
contract to ConSol specifications. Our investigation indicates that the high lifting rates are due
to the practice of safe coding pattern of Checks-Effects-Interactions [75] in the existing Uniswap
code base, which aligns closely with the design-by-contract principle, underscoring the practical
potential of ConSol.

For the remaining six assertions in the UniswapV3Pool contract, we identified a common pattern
involving effectful flow-sensitive properties, exemplified in the following snippet:

uint256 balance0Before = balance0();

IUniswapV3SwapCallback(msg.sender).uniswapV3SwapCallback(amount0, amount1, data);

require(balance0Before.add(uint256(amount0)) <= balance0(), 'IIA');

Since ConSol currently does not directly support temporal specifications, lifting these assertions,
although doable, is not straightforward. We leave the support for temporal contracts as future work.
Our initial experience in refactoring the Uniswap contracts demonstrates that the design-by-

contract is a suitable approach to improving the development process and clarity of the code,

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 186. Publication date: June 2024.

186:20 Guannan Wei, Danning Xie, Wuqi Zhang, Yongwei Yuan, and Zhuo Zhang

1 function getRate() { return this.balance / totalSupply; }

2 function withdraw() nonReentrancy {

3 uint balance = this.balance;

4 msg.sender.call{value: balanceOf[msg.sender]}();

5 balanceOf[msg.sender] = 0;

6 totalSupply -= amount * totalSupply / balance;

7 }

Fig. 8. The code snippet of ORACLE used by Sturdy.

aligned with previous studies [19, 52]. A large-scale empirical study remains valuable for future
work.
Table 3. Average transaction gas consumption on contracts of datasetD1 [47]. GIR: gas increase ratio

on ConSol-implemented contracts compared to the original. LR: percentage of lines in functions

that are expressed in ConSol specifications.

Contract BEC USDT ZRX THETA INB HEDG DAI EKT XIN HOT SWP VOTE

Original 960,999 62,426 51,468 51,540 53,738 53,941 53,696 51,911 51,375 51,525 55,728 210,395
ConSol 965,478 62,910 51,468 51,777 53,986 54,110 53,865 52,307 51,609 51,773 55,886 210,543
GIR (%) 0.47 0.78 0.00 0.46 0.46 0.31 0.31 0.76 0.46 0.48 0.28 0.07
LR (%) 39.10 30.83 0.00 38.89 38.89 50.00 50.00 40.83 34.44 44.44 50.00 20.83

Contract DOZ MCHH CC CLV LAND CARDS KB TRINK PACKS BKC EGG

Original 2,163,066 221,235 214,598 246,986 215,732 214,770 214,731 214,484 260,566 301,808 215,428
ConSol 2,166,247 221,526 215,082 247,471 216,201 215,123 215,079 214,965 260,920 302,199 215,791
GIR (%) 0.15 0.13 0.23 0.20 0.22 0.16 0.16 0.22 0.14 0.13 0.17
LR (%) 43.19 33.33 35.71 41.67 33.33 33.81 37.05 35.71 33.33 37.05 37.50

7 GAS EFFICIENCY

Although using ConSol could decouple the specifications from the business logic. it may introduce
additional runtime overhead (i.e. gas consumption) due to the instrumentation. In this section, we
show that using ConSol to monitor function specifications only induces marginal overhead.

Dataset. We use two datasets to evaluate the gas efficiency of ConSol. First, we leverage the
dataset collected by Li et al. [47], which consists of 23 contracts in ERC20, ERC721, and ERC1202
standards (D1). Second, we leverage the contracts of the 16 real-world attacks collected in Section 6,
which ConSol is applicable to defend (D2). We collect the historical transactions on Ethereum
invoking the corresponding vulnerable contracts to evaluate the gas consumption of ConSol.

Baseline and Methodology. The baseline we compare ConSol with is the contracts with low-
level assertions directly implemented as pre-/post-conditions in the function body or around
address calls. Specifically, for dataset D1, the baseline is the original contracts collected by Li
et al. [47]. Specifications are already implemented in the original contracts using require or
assert statements. To evaluate the gas efficiency of ConSol, for each contract, we manually
re-implement it by extracting the assertion-based pre-/post-conditions and expressing them in
ConSol specifications, while preserving the original contract logic. We leverage the test cases
(transactions) provided by Li et al. [47] to execute and evaluate the gas consumption of the baseline
and ConSol. For dataset D2, we manually patch the vulnerable contracts using assertions and
ConSol specifications (as in Section 6), respectively. We replay all historical transactions on
Ethereum that cover the patched functions and measure the gas consumption of the baseline and
ConSol-patched version.

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 186. Publication date: June 2024.

Consolidating Smart Contracts with Behavioral Contracts 186:21

Results. Table 3 shows the comparison of gas consumption on dataset D1. Rows Original and
ConSol show the average transaction gas consumption on the original contracts and ConSol-
patched contracts, respectively. The gas increase ratio of ConSol-patched contracts compared to
the original contracts is given in the third row GIR. The results show that the overhead of ConSol
specifications is marginal – only 0.34% more gas on average for each contract.
Table 2 shows the comparison of gas consumption on dataset D2. Column GFI and GIR show

the average increased gas fee (in US dollar) and gas consumption increase ratio of transactions
on the ConSol-patched contracts compared to the original vulnerable contracts. Columns by
Assertions and by ConSol show the GFI and GIR on the baseline (assertion-patched contracts) and
ConSol-patched contracts. Column #Tx gives the total number of historical transactions executed
on the patched functions. Similar to experiments on datasetD1, patching vulnerable contracts using
ConSol specifications only has insignificant additional gas overhead (avg. 0.211%), corresponding
to at most $0.94 more transaction fees (Sturdy). Compared to the baseline, ConSol specifications
induce a small increase in gas, thanks to the optimizations that avoid additional storage overhead
in the generated code (Section 5). The overhead is induced by the additional private function calls
generated in the translation of functions with ConSol specifications. Such overhead is minimal
since the private function calls are compiled into cheap JUMP instructions.

There are two special cases in Table 2: Qubit [17] and TecraSpace [80]. Qubit has no transactions
replayed because the original vulnerable function was only called once in history and this invocation
was the attack on the contract. Hence, we cannot measure the gas overhead of assertion-patched and
ConSol-patched versions of Qubit. The ConSol-patched version of TecraSpace does not introduce
any new assertions compared to the original vulnerable contract. Instead, one of the preconditions
is modified to fix the vulnerability. The overhead of such a minor change is further eliminated by
compilation optimization.

On dataset D1 we also report the percentage of lines in original functions that are expressed as
ConSol specifications (Column LR in Table 3). Similar to the results in Table 1, a large portion of
code in functions can be extracted as ConSol specifications. This indicates the ConSol is effective
in separating specifications from business logic in functions.

8 RELATEDWORK

Specification Languages and Behavioral Contracts. The Eiffel programming language pio-
neered the “design-by-contract” methodology [51, 53], advocating the idea of setting clear expecta-
tions between software components right at the outset of software development. Various languages
have added behavioral contracts, including but not limited to Java [14], C++ [16], Python [60],
Haskell [91], Racket [35], Elixir [62], etc.
Findler and Felleisen [35] propose to extend the notion of behavioral contracts to higher-order

functions, which has been implemented in Racket. ConSol borrows ideas from contracts for
higher-order functions to monitor address specifications, given their similar higher-order essence.
Strickland et al. [79] further refined the notion of higher-order contracts to chaperones and imper-
sonators. A future direction of ConSol is to extend it with higher-order temporal/trace contracts
[31, 55], which would be useful for checking temporal violations (e.g., reentrancy) in smart contracts.
In the context of smart contracts, Li et al. [47] allow users to specify global invariants using

quantifiers. Scribble [68] is a specification language that facilitates property-based testing, fuzzing,
and runtime validation of Solidity programs. A Scribble specification along with a Solidity program
can be translated to assertions that check the specification. SmartPulse’s SmartLTL [78] is a
specification language for Solidity based on linear temporal logic. While ConSol does not directly
specify global invariants or temporal invariants, it can be seen as a superset of what Scribble can

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 186. Publication date: June 2024.

186:22 Guannan Wei, Danning Xie, Wuqi Zhang, Yongwei Yuan, and Zhuo Zhang

describe with an additional focus on monitoring address calls/returns. The K-Framework [21] has
been applied to model EVM semantics [43] and specifications of smart contracts (e.g. for ERC20 [66]).

Runtime Validation/Verification of Smart Contracts. Runtime validation of smart contracts
is the most relevant direction to ConSol. Similar to ConSol that enforces pre-/post-conditions, Ellul
and Pace [32] propose ContractLarva and violation resolution procedures in runtime verification
when specifications are violated. ConSol is different from ContractLarva in that we provide finer-
grained property checking with both function-level and persistent address call checks. Li et al. [47]
propose Solythesis to translate user-specified contract-level invariants into solidity code via delta
update and delta check. Chen et al. [20] propose a declarative smart contract language in the style
of Datalog, which also inserts runtime checks after compilation.
Both ContractLarva, Solythesis, and ConSol are source-to-source translation tools, that only

rely on the standard Solidity runtime. As a quite different implementation strategy, there are also
EVM modifications that can reduce the overhead of runtime checks [49, 64].

Static Verification of Smart Contracts. Orthogonal to ConSol, static analysis and verification
of smart contract programs are intensively studied, andmany of the static analysis techniques can be
very effective for certain types of attacks. Tolmach et al. [84] survey the use of formal specification
and verification techniques in securing smart contracts. Statically checked refinement types [23, 83]
allow developers to write specifications as part of types. Bräm et al. [12] propose a specification
methodology to capture the intended behaviors of contracts under development, as well as external
unverified contracts. Grossman et al. [42] work only on callback-related vulnerabilities that ConSol
can dynamically prevent. Recent studies have also focused on modeling Solidity semantics [7, 26,
45, 69], and analyze flaws and vulnerabilities using pre-defined oracles [4, 13, 37, 39, 48, 63, 73],
focusing on aspects such as insecure payment [88], high-value vulnerabilities [74], and access
control [38]. In contrast, ConSol as a programmer-oriented language extension, can be repurposed
to expressive specifications for static verification. It would be also interesting for future work to
explore how ConSol’s address specification can be statically or gradually verified (e.g. by adopting
existing soft verification techniques [57, 58] for higher-order behavioral contracts).

Testing and Fuzzing of Smart Contracts. There has been a rich effort for smart contract testing
and fuzzing. Foundry [36] provides a toolkit that includes Forge, which offers property-based testing
and code coverage analysis. Echidna [40] is a property-based fuzzing tool that generates random
transactions to test contract properties. Medusa [27] and echidna-parade [41] extend Echidna’s
fuzzing capabilities, with a Go-Ethereum-based fuzzer and distributed execution. Smartian [22]
combines static and dynamic dataflow analysis for fuzzing smart contracts. ItyFuzz [71] is a
snapshot-based fuzzer for smart contracts that focuses on state and dataflow analysis. Compared to
fuzz testing, which detects vulnerabilities through (partially-)randomized inputs, ConSol provides
a notion to specify expected properties, which can be used for both runtime enforcement and
guiding testing and fuzzing, which is not explored in the current work.

9 CONCLUSION

In this paper, we propose a specification and monitoring system, ConSol, for the Solidity smart
contract programming language. ConSol supports attaching and enforcing specifications for both
top-level functions and address values. ConSol persistently monitors address calls via a whole-
program transformation, which ensures any violation of address call conditions in the current
contract scope is captured. We examine the effectiveness and gas efficiency using 20 real-world
attacks. By replaying existing attack transactions, ConSol-patched contracts successfully defend
the attack with only marginal additional gas consumption.

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 186. Publication date: June 2024.

Consolidating Smart Contracts with Behavioral Contracts 186:23

AVAILABILITY

Our prototype implementation and experiment results are available at [89].

ACKNOWLEDGEMENT

We would like to thank the anonymous reviewers of PLDI for their constructive comments and
feedback.

REFERENCES

[1] 2000. Bookshelf - The Pragmatic Programmer: From Journeyman to Master, Introduction to the Team Software Process.
IEEE Softw. 17, 6 (2000), 108–110.

[2] Hayden Adams, Noah Zinsmeister, and Dan Robinson. 2020. Uniswap v2 Core. (2020).
[3] Hayden Adams, Noah Zinsmeister, Moody Salem, River Keefer, and Dan Robinson. 2021. Uniswap v3 core. Tech. rep.,

Uniswap, Tech. Rep. (2021).
[4] Elvira Albert, Shelly Grossman, Noam Rinetzky, Clara Rodríguez-Núñez, Albert Rubio, and Mooly Sagiv. 2020. Taming

callbacks for smart contract modularity. Proc. ACM Program. Lang. 4, OOPSLA (2020), 209:1–209:30.
[5] Beosin Alert. 2023. https://twitter.com/BeosinAlert/status/1646481687445114881.
[6] Chickn Bao. 2023. Analysis and Response to the July 4th baoETH Exploit. https://medium.com/baomunity/analysis-

and-response-to-the-july-4th-baoeth-exploit-3d60b886fcce.
[7] Massimo Bartoletti, Letterio Galletta, and Maurizio Murgia. 2019. A Minimal Core Calculus for Solidity Contracts. In

DPM/CBT, ESORICS (Lecture Notes in Computer Science, Vol. 11737). Springer, 233–243.
[8] Block Sec. 2022. https://twitter.com/BlockSecTeam/status/1584959295829180416.
[9] BlockSec. 2023. https://twitter.com/BlockSecTeam/status/1668084629654638592.
[10] BlockSec. 2023. https://blocksec.com/blog/yet-another-tragedy-of-precision-loss-an-in-depth-analysis-of-the-kyber-

swap-incident-1.
[11] Matthias Blume and David A. McAllester. 2006. Sound and complete models of contracts. J. Funct. Program. 16, 4-5

(2006), 375–414.
[12] Christian Bräm, Marco Eilers, Peter Müller, Robin Sierra, and Alexander J. Summers. 2021. Rich specifications for

Ethereum smart contract verification. Proc. ACM Program. Lang. 5, OOPSLA (2021), 1–30.
[13] Lexi Brent, Neville Grech, Sifis Lagouvardos, Bernhard Scholz, and Yannis Smaragdakis. 2020. Ethainter: a smart

contract security analyzer for composite vulnerabilities. In PLDI. ACM, 454–469.
[14] Lilian Burdy, Yoonsik Cheon, David R. Cok, Michael D. Ernst, Joseph R. Kiniry, Gary T. Leavens, K. Rustan M. Leino,

and Erik Poll. 2005. An overview of JML tools and applications. Int. J. Softw. Tools Technol. Transf. 7, 3 (2005), 212–232.
[15] Vitalik Buterin et al. 2014. A next-generation smart contract and decentralized application platform. white paper 3, 37

(2014), 2–1.
[16] Lorenzo Caminiti. 2023. Boost.Contract. https://www.boost.org/doc/libs/1_82_0/libs/contract/doc/html/index.html
[17] CertiK. 2023. https://certik.medium.com/qubit-bridge-collapse-exploited-to-the-tune-of-80-million-a7ab9068e1a0.
[18] CertiK Alert. 2023. https://twitter.com/CertiKAlert/status/1647530789947469825.
[19] Patrice Chalin. 2006. Are Practitioners Writing Contracts?. In RODIN Book (Lecture Notes in Computer Science, Vol. 4157).

Springer, 100–113.
[20] Haoxian Chen, Gerald Whitters, Mohammad Javad Amiri, Yuepeng Wang, and Boon Thau Loo. 2022. Declarative

smart contracts. In Proceedings of the 30th ACM Joint European Software Engineering Conference and Symposium on the

Foundations of Software Engineering. 281–293.
[21] Xiaohong Chen and Grigore Rosu. 2019. K - A Semantic Framework for Programming Languages and Formal Analysis.

In SETSS (Lecture Notes in Computer Science, Vol. 12154). Springer, 122–158.
[22] Jaeseung Choi, Doyeon Kim, Soomin Kim, Gustavo Grieco, Alex Groce, and Sang Kil Cha. 2021. Smartian: Enhancing

smart contract fuzzing with static and dynamic data-flow analyses. In 2021 36th IEEE/ACM International Conference on

Automated Software Engineering (ASE). IEEE, 227–239.
[23] Michael Coblenz. 2017. Obsidian: A Safer Blockchain Programming Language. In 2017 IEEE/ACM 39th International

Conference on Software Engineering Companion (ICSE-C). 97–99. https://doi.org/10.1109/ICSE-C.2017.150
[24] Consensys. 2023. Consensys. https://www.consensys.net/.
[25] Consensys. 2023. solc-typed-ast. https://github.com/Consensys/solc-typed-ast.
[26] Silvia Crafa, Matteo Di Pirro, and Elena Zucca. 2019. Is Solidity Solid Enough?. In Financial Cryptography Workshops

(Lecture Notes in Computer Science, Vol. 11599). Springer, 138–153.
[27] crytic. 2024. medusa. https://github.com/crytic/medusa.
[28] NumenCyber. 2023. https://twitter.com/numencyber/status/1669278694744150016?cxt=HHwWgMDS9Z2IvKouAAAA.

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 186. Publication date: June 2024.

https://twitter.com/BeosinAlert/status/1646481687445114881
https://medium.com/baomunity/analysis-and-response-to-the-july-4th-baoeth-exploit-3d60b886fcce
https://medium.com/baomunity/analysis-and-response-to-the-july-4th-baoeth-exploit-3d60b886fcce
https://twitter.com/BlockSecTeam/status/1584959295829180416
https://twitter.com/BlockSecTeam/status/1668084629654638592
https://blocksec.com/blog/yet-another-tragedy-of-precision-loss-an-in-depth-analysis-of-the-kyber-swap-incident-1
https://blocksec.com/blog/yet-another-tragedy-of-precision-loss-an-in-depth-analysis-of-the-kyber-swap-incident-1
https://www.boost.org/doc/libs/1_82_0/libs/contract/doc/html/index.html
https://certik.medium.com/qubit-bridge-collapse-exploited-to-the-tune-of-80-million-a7ab9068e1a0
https://twitter.com/CertiKAlert/status/1647530789947469825
https://doi.org/10.1109/ICSE-C.2017.150
https://www.consensys.net/
https://github.com/Consensys/solc-typed-ast
https://github.com/crytic/medusa
https://twitter.com/numencyber/status/1669278694744150016?cxt=HHwWgMDS9Z2IvKouAAAA

186:24 Guannan Wei, Danning Xie, Wuqi Zhang, Yongwei Yuan, and Zhuo Zhang

[29] Phil Daian. 2016. The analysis of the DAO exploit. https://hackingdistributed.com/2016/06/18/analysis-of-the-dao-
exploit/.

[30] Christos Dimoulas, Max S. New, Robert Bruce Findler, and Matthias Felleisen. 2016. Oh Lord, please don’t let contracts
be misunderstood (functional pearl). In ICFP. ACM, 117–131.

[31] Tim Disney, Cormac Flanagan, and Jay McCarthy. 2011. Temporal higher-order contracts. In ICFP. ACM, 176–188.
[32] Joshua Ellul and Gordon J. Pace. 2018. Runtime Verification of Ethereum Smart Contracts. In EDCC. IEEE Computer

Society, 158–163.
[33] Ethereum. 2023. Solidity Documentation. https://docs.soliditylang.org/en/v0.8.21/types.html.
[34] Sturdy Finance. 2023. Sturdy Finance. https://sturdy.finance/.
[35] Robert Bruce Findler and Matthias Felleisen. 2002. Contracts for higher-order functions. In ICFP. ACM, 48–59.
[36] fountry-rs. 2024. Foundry. https://github.com/foundry-rs/foundry.
[37] Asem Ghaleb, Julia Rubin, and Karthik Pattabiraman. 2022. eTainter: detecting gas-related vulnerabilities in smart

contracts. In Proceedings of the 31st ACM SIGSOFT International Symposium on Software Testing and Analysis. 728–739.
[38] Asem Ghaleb, Julia Rubin, and Karthik Pattabiraman. 2023. AChecker: Statically Detecting Smart Contract Access

Control Vulnerabilities. Proc. ACM ICSE (2023).
[39] Neville Grech, Michael Kong, Anton Jurisevic, Lexi Brent, Bernhard Scholz, and Yannis Smaragdakis. 2018. MadMax:

surviving out-of-gas conditions in Ethereum smart contracts. Proc. ACM Program. Lang. 2, OOPSLA (2018), 116:1–
116:27.

[40] Gustavo Grieco, Will Song, Artur Cygan, Josselin Feist, and Alex Groce. 2020. Echidna: effective, usable, and fast
fuzzing for smart contracts. In Proceedings of the 29th ACM SIGSOFT international symposium on software testing and

analysis. 557–560.
[41] Alex Groce and Gustavo Grieco. 2021. echidna-parade: A tool for diverse multicore smart contract fuzzing. In

Proceedings of the 30th ACM SIGSOFT International Symposium on Software Testing and Analysis. 658–661.
[42] Shelly Grossman, Ittai Abraham, Guy Golan-Gueta, Yan Michalevsky, Noam Rinetzky, Mooly Sagiv, and Yoni Zohar.

2018. Online detection of effectively callback free objects with applications to smart contracts. Proc. ACM Program.

Lang. 2, POPL (2018), 48:1–48:28.
[43] Everett Hildenbrandt, Manasvi Saxena, Nishant Rodrigues, Xiaoran Zhu, Philip Daian, Dwight Guth, Brandon M.

Moore, Daejun Park, Yi Zhang, Andrei Stefanescu, and Grigore Rosu. 2018. KEVM: A Complete Formal Semantics of
the Ethereum Virtual Machine. In CSF. IEEE Computer Society, 204–217.

[44] PeckShield Inc. 2023. https://twitter.com/peckshield/status/1690877589005778945.
[45] Jiao Jiao, Shuanglong Kan, Shang-Wei Lin, David Sanán, Yang Liu, and Jun Sun. 2020. Semantic Understanding of

Smart Contracts: Executable Operational Semantics of Solidity. In IEEE Symposium on Security and Privacy. IEEE,
1695–1712.

[46] Ping Fan Ke and Ka Chung Boris Ng. 2022. Bank Error in Whose Favor? A Case Study of Decentralized Finance
Misgovernance. In ICIS. Association for Information Systems.

[47] Ao Li, Jemin Andrew Choi, and Fan Long. 2020. Securing smart contract with runtime validation. In PLDI. ACM,
438–453.

[48] Zeqin Liao, Sicheng Hao, Yuhong Nan, and Zibin Zheng. 2023. SmartState: Detecting State-Reverting Vulnerabilities in
Smart Contracts via Fine-Grained State-Dependency Analysis. In Proceedings of the 32nd ACM SIGSOFT International

Symposium on Software Testing and Analysis. 980–991.
[49] Fuchen Ma, Ying Fu, Meng Ren, Mingzhe Wang, Yu Jiang, Kaixiang Zhang, Huizhong Li, and Xiang Shi. 2019. EVM*:

From Offline Detection to Online Reinforcement for Ethereum Virtual Machine. In SANER. IEEE, 554–558.
[50] MevRefund. 2022. https://twitter.com/MevRefund/status/1580917351217627136.
[51] Bertrand Meyer. 1991. Eiffel: The Language. Prentice-Hall.
[52] Bertrand Meyer. 1997. Object-Oriented Software Construction, 2nd Edition. Prentice-Hall.
[53] Bertrand Meyer. 1998. Design by Contract: The Eiffel Method. In TOOLS (26). IEEE Computer Society, 446.
[54] Miner. 2023. https://twitter.com/minerercx/status/1757787864299934023.
[55] Cameron Moy and Matthias Felleisen. 2023. Trace contracts. J. Funct. Program. 33 (2023).
[56] Satoshi Nakamoto. 2008. Bitcoin: A peer-to-peer electronic cash system. Decentralized business review (2008).
[57] Phuc C. Nguyen, Thomas Gilray, Sam Tobin-Hochstadt, and David Van Horn. 2018. Soft contract verification for

higher-order stateful programs. Proc. ACM Program. Lang. 2, POPL (2018), 51:1–51:30.
[58] Phuc C. Nguyen, Sam Tobin-Hochstadt, and David Van Horn. 2014. Soft contract verification. In ICFP. ACM, 139–152.
[59] Paradigm. 2023. Reth: Modular, contributor-friendly and blazing-fast implementation of the Ethereum protocol.

https://github.com/paradigmxyz/reth.
[60] Parquery. 2023. icontract. Accessed: July 13, 2023.
[61] PeckShield Inc. 2023. https://twitter.com/peckshield/status/1626493024879673344.

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 186. Publication date: June 2024.

https://hackingdistributed.com/2016/06/18/analysis-of-the-dao-exploit/
https://hackingdistributed.com/2016/06/18/analysis-of-the-dao-exploit/
https://docs.soliditylang.org/en/v0.8.21/types.html
https://sturdy.finance/
https://github.com/foundry-rs/foundry
https://twitter.com/peckshield/status/1690877589005778945
https://twitter.com/MevRefund/status/1580917351217627136
https://twitter.com/minerercx/status/1757787864299934023
https://github.com/paradigmxyz/reth
https://twitter.com/peckshield/status/1626493024879673344

Consolidating Smart Contracts with Behavioral Contracts 186:25

[62] Sergio Pérez, Luis Eduardo Bueso de Barrio, Ignacio Ballesteros, Ángel Herranz, Julio Mariño, Clara Benac Earle, and
Lars-Åke Fredlund. 2022. Executable contracts for Elixir. In Erlang Workshop. ACM, 40–46.

[63] George Pîrlea, Amrit Kumar, and Ilya Sergey. 2021. Practical smart contract sharding with ownership and commutativity
analysis. In PLDI. ACM, 1327–1341.

[64] Michael Rodler, Wenting Li, Ghassan O. Karame, and Lucas Davi. 2019. Sereum: Protecting Existing Smart Contracts
Against Re-Entrancy Attacks. In NDSS. The Internet Society.

[65] RugDoctorApe. 2023. https://twitter.com/RugDoctorApe/status/1565739119606890498.
[66] Runtime Verification. 2018. ERC20-Semantics: Formal semantics and verification properties for ERC20 smart contracts.

https://github.com/runtimeverification/erc20-semantics. Accessed on 2024-03-24.
[67] S7iter. 2023. https://medium.com/@S7iter_/erc2771-multicall-arbitrary-address-spoofing-attack-analysis-and-

recurrence-48c57fdb9a98.
[68] Scribble. 2024. Scribble Documentation. https://docs.scribble.codes/
[69] Ilya Sergey. 2021. The Next 700 Smart Contract Languages. Springer International Publishing, Cham, 69–94. https:

//doi.org/10.1007/978-3-031-01807-7_3
[70] SharkTeam. 2023. https://app.chainaegis.com/home/news/detail?contentId=341&lang=en-US.
[71] Chaofan Shou, Shangyin Tan, and Koushik Sen. 2023. ItyFuzz: Snapshot-Based Fuzzer for Smart Contract. In Proceedings

of the 32nd ACM SIGSOFT International Symposium on Software Testing and Analysis. 322–333.
[72] SlowMist. 2023. https://twitter.com/SlowMist_Team/status/1644936375924584449.
[73] Yannis Smaragdakis, Neville Grech, Sifis Lagouvardos, Konstantinos Triantafyllou, and Ilias Tsatiris. 2021. Symbolic

value-flow static analysis: deep, precise, complete modeling of Ethereum smart contracts. Proc. ACM Program. Lang. 5,
OOPSLA (2021), 1–30.

[74] Yannis Smaragdakis, Neville Grech, Sifis Lagouvardos, Konstantinos Triantafyllou, and Tony Rocco Valentine. 2023.
Program Analysis for High-Value Smart Contract Vulnerabilities: Techniques and Insights. (2023).

[75] Solidity. 2023. https://docs.soliditylang.org/en/develop/security-considerations.html#use-the-checks-ef fects-
interactions-pattern.

[76] Solidity. 2023. Solidity Contracts: Function Modifiers. https://docs.soliditylang.org/en/latest/contracts.html#function-
modifiers Accessed on 2023-11-17.

[77] Solidity Developers. 2023. Solidity Documentation: Function Modifiers. Solidity. https://docs.soliditylang.org/en/v0.8.20
/contracts.html#modifiers Accessed on July 20, 2023.

[78] Jon Stephens, Kostas Ferles, Benjamin Mariano, Shuvendu K. Lahiri, and Isil Dillig. 2021. SmartPulse: Automated
Checking of Temporal Properties in Smart Contracts. In SP. IEEE, 555–571.

[79] T. Stephen Strickland, Sam Tobin-Hochstadt, Robert Bruce Findler, and Matthew Flatt. 2012. Chaperones and imper-
sonators: run-time support for reasonable interposition. In OOPSLA. ACM, 943–962.

[80] SunWeb3Sec. 2022. https://github.com/SunWeb3Sec/DeFiHackLabs/blob/main/past/2022/README.md#20220204-
tecraspace---any-token-is-destroyed.

[81] SunWeb3Sec. 2023. https://github.com/SunWeb3Sec/DeFiHackLabs/blob/main/src/test/ERC20TokenBank_exp.sol.
[82] SunWeb3Sec. 2023. DeFi Hacks Reproduce - Foundry. https://github.com/SunWeb3Sec/DeFiHackLabs.
[83] Bryan Tan, Benjamin Mariano, Shuvendu K. Lahiri, Isil Dillig, and Yu Feng. 2022. SolType: refinement types for

arithmetic overflow in solidity. Proc. ACM Program. Lang. 6, POPL (2022), 1–29.
[84] Palina Tolmach, Yi Li, Shangwei Lin, Yang Liu, and Zengxiang Li. 2022. A Survey of Smart Contract Formal Specification

and Verification. ACM Comput. Surv. 54, 7 (2022), 148:1–148:38.
[85] Trail of Bits. 2023. Trail of Bits. https://www.trailofbits.com/.
[86] Uno.Reinsure. 2022. Umbrella Network Hacked: $700K Lost. https://medium.com/uno-re/umbrella-network-hacked-

700k-lost-97285b69e8c7.
[87] Fabian Vogelsteller and Vitalik Buterin. 2023. EIP-20: Token Standard. https://eips.ethereum.org/EIPS/eip-20.
[88] Shuai Wang, Chengyu Zhang, and Zhendong Su. 2019. Detecting nondeterministic payment bugs in Ethereum smart

contracts. Proc. ACM Program. Lang. 3, OOPSLA (2019), 189:1–189:29.
[89] Guannan Wei, Danning Xie, Wuqi Zhang, Yongwei Yuan, and Zhuo Zhang. 2024. ConSol Artifact. https://github.com

/Kraks/contract-for-contract/.
[90] XCarnival. 2023. https://twitter.com/XCarnival_Lab/status/1541226298399653888.
[91] Dana N. Xu, Simon L. Peyton Jones, and Koen Claessen. 2009. Static contract checking for Haskell. In POPL. ACM,

41–52.
[92] Zhuo Zhang, Brian Zhang, Wen Xu, and Zhiqiang Lin. 2023. Demystifying Exploitable Bugs in Smart Contracts. In

ICSE. IEEE, 615–627.
[93] Liyi Zhou, Xihan Xiong, Jens Ernstberger, Stefanos Chaliasos, ZhipengWang, YeWang, Kaihua Qin, Roger Wattenhofer,

Dawn Song, and Arthur Gervais. 2022. SoK: Decentralized Finance (DeFi) Attacks. IACR Cryptol. ePrint Arch. (2022),
1773.

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 186. Publication date: June 2024.

https://twitter.com/RugDoctorApe/status/1565739119606890498
https://github.com/runtimeverification/erc20-semantics
https://medium.com/@S7iter_/erc2771-multicall-arbitrary-address-spoofing-attack-analysis-and-recurrence-48c57fdb9a98
https://medium.com/@S7iter_/erc2771-multicall-arbitrary-address-spoofing-attack-analysis-and-recurrence-48c57fdb9a98
https://docs.scribble.codes/
https://doi.org/10.1007/978-3-031-01807-7_3
https://doi.org/10.1007/978-3-031-01807-7_3
https://app.chainaegis.com/home/news/detail?contentId=341&lang=en-US
https://twitter.com/SlowMist_Team/status/1644936375924584449
https://docs.soliditylang.org/en/develop/security-considerations.html#use-the-checks-effects-interactions-pattern
https://docs.soliditylang.org/en/develop/security-considerations.html#use-the-checks-effects-interactions-pattern
https://docs.soliditylang.org/en/latest/contracts.html#function-modifiers
https://docs.soliditylang.org/en/latest/contracts.html#function-modifiers
https://docs.soliditylang.org/en/v0.8.20/contracts.html#modifiers
https://docs.soliditylang.org/en/v0.8.20/contracts.html#modifiers
https://github.com/SunWeb3Sec/DeFiHackLabs/blob/main/past/2022/README.md#20220204-tecraspace---any-token-is-destroyed
https://github.com/SunWeb3Sec/DeFiHackLabs/blob/main/past/2022/README.md#20220204-tecraspace---any-token-is-destroyed
https://github.com/SunWeb3Sec/DeFiHackLabs/blob/main/src/test/ERC20TokenBank_exp.sol
https://github.com/SunWeb3Sec/DeFiHackLabs
https://www.trailofbits.com/
https://medium.com/uno-re/umbrella-network-hacked-700k-lost-97285b69e8c7
https://medium.com/uno-re/umbrella-network-hacked-700k-lost-97285b69e8c7
https://github.com/Kraks/contract-for-contract/
https://github.com/Kraks/contract-for-contract/
https://twitter.com/XCarnival_Lab/status/1541226298399653888

186:26 Guannan Wei, Danning Xie, Wuqi Zhang, Yongwei Yuan, and Zhuo Zhang

Received 2023-11-16; accepted 2024-03-31

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 186. Publication date: June 2024.

	Abstract
	1 Introduction
	2 Motivation and Challenges
	3 ConSol by Examples
	3.1 Contracts for First-Order Values
	3.2 Contracts for Higher-Order Values
	3.3 Persistent Monitoring

	4 Formal Model
	4.1 Syntax
	4.2 Static Semantics
	4.3 Translation Semantics
	4.4 Expressiveness and Limitations
	4.5 Correctness

	5 Optimizing Gas Efficiency in Implementation
	6 Case Studies
	7 Gas Efficiency
	8 Related Work
	9 Conclusion
	References

