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Continuous testing for DL libraries is in high demand
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● Nightly build every few days

● 8 official versions in 2023

● 142,385 lines of code changes in a month

● New bugs are introduced along with the rapid changes.

● Existing solutions do not integrate cutting-edge DL testing tools including:

● DocTer (ISSTA 22): documentation-guided fuzz testing framework for DL libraries. 

● EAGLE (ICSE 22): differential testing framework with equivalent graphs for DL APIs.

● …

Xie et al, SANER 2024 Industrial track



CEDAR: a continuous testing framework

● Integrates two state-of-the-art DL testing approaches (DocTer and 

EAGLE).

● Effective: detecting 83 bugs affecting 140 PyTorch and TensorFlow 

APIs, including 23 previously unknown bugs.

● Efficient: with tool-specific optimization strategies to reduce the time 

and space overhead.

● Shortens the bug detection latency by 338.6 days on average.
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CEDAR overview
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CEDAR: tool-specific optimization to accelerate input generation    
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CEDAR: tool-specific optimization to accelerate input generation    
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Experimental Setup
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2 libraries

10 versions of each library evaluated

519 and  925 APIs from PyTorch and TensorFlow

1,000 test inputs for each API

24 parallel processes 



CEDAR’s Bug detection results over continuous testing

Verified New All API

PyTorch 6 6 8 35

TensorFlow 15 17 75 105

Total 21 23 83 140
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83 bugs affecting 140 APIs,
including 2 high-priority bugs (24 APIs),

23 of the 83 bugs are new, 
21 of 23 are confirmed or fixed.



Between introduction 
to detection

Bug detection latency reduction
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Between introduction 
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Bug detection latency reduction
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Bug detection latency

Timeline
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CEDAR leads to bugs being detected at least on average 338.6 days earlier

Average: 338.6 days
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CEDAR detected regression bug through continuous testing
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CEDAR shows its effectiveness in regression and continuous testing

Timeline

Fixed in v2.4.0 
(Dec. 14, 2020)

Re-introduced in v2.7.0 
(Nov. 4 2021)

Fixed
(Nov. 2022)

Detection by CEDAR
(Sep. 17, 2022)

Segmentation Fault

tf.random.learned_unigram_candidate_sampler( 
     true_classes=np.array([[1000000]]),  
     num_true=1, … 
) 

Large value



A new high-priority bug affecting 23 PyTorch APIs
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\

Reported on Sep. 15th, 2022
Fixed on Sep. 20nd, 2022

Fix

torch.add(  
     input = torch.ones([2,2]),  
     other = torch.ones([1]),  
     out = torch.ones([2,2,1,1])  
) 

out has at least two 
more dimensions than 

both operands

Segmentation Fault



A new inconsistency bug
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Reported on May. 9th, 2022
Confirmed on May. 11th, 2022

Zero values

Large 
inconsistencies

O1 = tf.signal.stft(..., frame_length=0, ...) 

@tf.function 

def fun_wrapper(x): 

    return tf.signal.stft(*x) 

O2 = fun_wrapper(..., frame_length=0, ...) 

np.max(o1 - o2)  # (1.2623837153272947e+180+2.19373012209e-312j) 

optimized

original

inconsistency



Effectiveness of the optimization strategies
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Time efficiency

● shorten the execution time from 130:36 to 8:29
● reduce the time overhead by a factor of 11.3

Space efficiency

● remove 3,140,929 redundant files in total

● release 159.2 GB space

● reduce the space overhead by a factor of 9.7



Conclusion and Discussion
● We propose CEDAR, a continuous testing framework for DL libraries that 

efficiently integrates two state-of-the-art DL testing approaches to test DL 

libraries for detecting bugs effectively.

● CEDAR detected 83 bugs affecting 140 PyTorch and TensorFlow APIs, 

including 23 previously unknown bugs with 21 confirmed or fixed.

● The optimization strategies reduce the time and space overhead by a factor 

of 11.3 and 9.7.

● CEDAR’s continuous application through 20 versions has effectively 

shortened the bug detection latency by almost a year (338.6 days).
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