
CEDAR: Continuous Testing of Deep Learning Libraries

Danning Xie1 Lin Tan1Hung Viet Pham2

1 2 3

Yu Guo3 Adnan Aziz3 Erik Meijer3

Jiannan Wang1

 1

SANER 2024 Industrial

Continuous testing for DL libraries is in high demand

 2

● Nightly build every few days

● 8 official versions in 2023

● 142,385 lines of code changes in a month

● New bugs are introduced along with the rapid changes.

● Existing solutions do not integrate cutting-edge DL testing tools including:

● DocTer (ISSTA 22): documentation-guided fuzz testing framework for DL libraries.

● EAGLE (ICSE 22): differential testing framework with equivalent graphs for DL APIs.

● …

Xie et al, SANER 2024 Industrial track

CEDAR: a continuous testing framework

● Integrates two state-of-the-art DL testing approaches (DocTer and

EAGLE).

● Effective: detecting 83 bugs affecting 140 PyTorch and TensorFlow

APIs, including 23 previously unknown bugs.

● Efficient: with tool-specific optimization strategies to reduce the time

and space overhead.

● Shortens the bug detection latency by 338.6 days on average.

 3

CEDAR overview

 4

Input generation

C-EAGLELibraries

Test input evaluationProgram installation

 Program
 installer Executor

 Bug reporter

Nightly version

 Scheduler

C-DocTer

Rules Equivalent
graphs

1 2 3

Document and
constraints Test inputs

CEDAR overview

 5

Input generation

C-EAGLELibraries

Test input evaluationProgram installation

 Program
 installer Executor

 Bug reporter

Nightly version

 Scheduler

C-DocTer

Equivalent
graphs

Rules

1 2 3

Document and
constraints Test inputs

CEDAR overview

 6

Input generation

C-EAGLE

Test input evaluationProgram installation

 Program
 installer Executor

 Bug reporter

Nightly version

 Scheduler

C-DocTer

Equivalent
graphs

Rules

1 2 3

Document and
constraints Test inputs

 Scheduler

 Program
 installer

Nightly version

LibrariesLibraries

CEDAR overview

 7

Input generation

C-EAGLELibraries

Test input evaluationProgram installation

 Program
 installer Executor

 Bug reporter

Nightly version

 Scheduler

C-DocTer

Equivalent
graphs

Rules

1 2 3

Document and
constraints Test inputs

 Scheduler

 Program
 installer

Nightly version

C-EAGLE

C-DocTer

Document and
constraints Test inputs

Rules Equivalent
graphs

CEDAR overview

 8

Input generation

C-EAGLELibraries

Test input evaluationProgram installation

 Program
 installer Executor

 Bug reporter

Nightly version

 Scheduler

C-DocTer

Equivalent
graphs

Rules

1 2 3

Document and
constraints Test inputs

 Scheduler

 Program
 installer

Nightly version

C-EAGLE

C-DocTer

Document and
constraints Test inputs

Rules Equivalent
graphs

 Executor

 Bug reporter

optimization strategies

CEDAR: tool-specific optimization to accelerate input generation

 9

Input generation

C-EAGLELibraries

Program installation

 Program
 installer

Nightly version

 Scheduler

C-DocTer

Rules Equivalent
graphs

1 2

Document and
constraints Test inputs

…

Inconsistency

…

crash

…

CEDAR: tool-specific optimization to accelerate input generation

 10

Input generation

C-EAGLELibraries

Program installation

 Program
 installer

Nightly version

 Scheduler

C-DocTer

Rules Equivalent
graphs

1 2

Document and
constraints Test inputs

Inconsistency

…

crash

Valid Exception
…

Test case reduction

Feed valid inputs generated by C-DocTer directly to C-EAGLE

Experimental Setup

 11

2 libraries

10 versions of each library evaluated

519 and 925 APIs from PyTorch and TensorFlow

1,000 test inputs for each API

24 parallel processes

CEDAR’s Bug detection results over continuous testing

Verified New All API

PyTorch 6 6 8 35

TensorFlow 15 17 75 105

Total 21 23 83 140

 12

83 bugs affecting 140 APIs,
including 2 high-priority bugs (24 APIs),

23 of the 83 bugs are new,
21 of 23 are confirmed or fixed.

Between introduction
to detection

Bug detection latency reduction

 13

Timeline

tf.linalg.diag

Bug introduction

t0

v2.4.0 (Dec. 14, 2020)

Between introduction
to detection

Bug detection latency reduction

 14

Bug detection latency

Timeline

tf.linalg.diag

Bug report

t1

Sep. 15, 2022
Bug introduction

t0

v2.4.0 (Dec. 14, 2020)

Between introduction
to detection

Bug detection latency reduction

 15

Bug detection latency

Timeline

tf.linalg.diag

640 days

Sep. 15, 2022
Bug report

t1

(minimum)

Bug introduction

t0

v2.4.0 (Dec. 14, 2020)

reduction

Bug detection latency reduction

 16

Bug detection latency

Timeline

Bug report

t1

(minimum)

CEDAR leads to bugs being detected at least on average 338.6 days earlier

Average: 338.6 days

Between introduction
to detection

Bug introduction

t0

reduction

CEDAR detected regression bug through continuous testing

 17
CEDAR shows its effectiveness in regression and continuous testing

Timeline

Fixed in v2.4.0
(Dec. 14, 2020)

Re-introduced in v2.7.0
(Nov. 4 2021)

Fixed
(Nov. 2022)

Detection by CEDAR
(Sep. 17, 2022)

Segmentation Fault

tf.random.learned_unigram_candidate_sampler(
 true_classes=np.array([[1000000]]),
 num_true=1, …
)

Large value

A new high-priority bug affecting 23 PyTorch APIs

 18

\

Reported on Sep. 15th, 2022
Fixed on Sep. 20nd, 2022

Fix

torch.add(
 input = torch.ones([2,2]),
 other = torch.ones([1]),
 out = torch.ones([2,2,1,1])
)

out has at least two
more dimensions than

both operands

Segmentation Fault

A new inconsistency bug

 19

Reported on May. 9th, 2022
Confirmed on May. 11th, 2022

Zero values

Large
inconsistencies

O1 = tf.signal.stft(..., frame_length=0, ...)

@tf.function

def fun_wrapper(x):

 return tf.signal.stft(*x)

O2 = fun_wrapper(..., frame_length=0, ...)

np.max(o1 - o2) # (1.2623837153272947e+180+2.19373012209e-312j)

optimized

original

inconsistency

Effectiveness of the optimization strategies

 20

Time efficiency

● shorten the execution time from 130:36 to 8:29
● reduce the time overhead by a factor of 11.3

Space efficiency

● remove 3,140,929 redundant files in total

● release 159.2 GB space

● reduce the space overhead by a factor of 9.7

Conclusion and Discussion
● We propose CEDAR, a continuous testing framework for DL libraries that

efficiently integrates two state-of-the-art DL testing approaches to test DL

libraries for detecting bugs effectively.

● CEDAR detected 83 bugs affecting 140 PyTorch and TensorFlow APIs,

including 23 previously unknown bugs with 21 confirmed or fixed.

● The optimization strategies reduce the time and space overhead by a factor

of 11.3 and 9.7.

● CEDAR’s continuous application through 20 versions has effectively

shortened the bug detection latency by almost a year (338.6 days).

 21

